Introduction to radiation in the workplace

Every day in the UK, a wide range of radiation types are used in industrial, medical, research and communications applications.

Some of these applications cause harmful exposure risks that must be effectively controlled. This explains how those controls can be put in place.

The main types of radiation

Radiation is generally classed as either ‘ionising’ or ‘non-ionising’.

Ionising radiation generally has more energy than non-ionising radiation.

Ionising radiations

These include:

They are typically used in:

But, they may also be produced from naturally occurring radioactive substances, including radon gas.

Non-ionising radiations

These include:

The hazards

Ionising radiation can cause dermatitis, burns, cell damage, cataracts, changes to blood.

Microwaves and radio frequencies can cause heating of any exposed part of the body.

Infra-red rays can cause skin burns and cataracts.

UV light can cause skin burns, skin cancer, conjunctivitis and arc eye.

Lasers can cause permanent, severe damage to the eye and skin.

Exposure to ionising and UV radiation can damage DNA and can cause health effects, such as cancer, later in life. The risks are small for low levels of exposure but exposure to high levels of ionising and non-ionising radiations can cause acute effects such as burns, tissue and organ damage.

What you have to do

Identify all sources of ionising and non-ionising radiation in your workplace and the risks they pose. Once you have identified the significant risks, you must control them.

Try and reduce any exposure to ionising and UV radiation as far as possible. For example, you may be able to use safer alternative processes or equipment such as ultrasonic, non-destructive testing instead of X-rays.

You should:

Do not:

Radiation emergency: ionising radiations

If your work with ionising radiations could produce a radiation emergency (such as an event that could lead to a member of the public receiving a dose of ionising radiation above certain levels) the Radiation (Emergency Preparedness and Public Information) Regulations 2019 may apply.

Electromagnetic fields (EMFs)

Businesses are required to manage general risks in the workplace – this includes sources of non-ionising radiation, such as electromagnetic fields (EMFs), which are generated wherever electricity is used.



A scrap metal dealer bought a hand-held X-ray fluorescence analyser (sometimes called an XRF gun) to analyse the alloy content in scrap. These guns generate an intense beam of X-ray radiation at the front end of the equipment, and also result in a scattering of X-rays when they strike the test material.

When used properly, pointing away from all parts of the body, the radiation risks to operators and others will be minimal. However, if the equipment is damaged, incorrectly set up, or misused, there is the potential for exposure to high-radiation fields.

How the problem was tackled

The manager of the scrap yard consulted a radiation protection adviser (RPA), who helped the company carry out a risk assessment. This recommended that workers were trained in how to use the analyser safely and not to operate the gun without fully covering the X-ray aperture, or to hold the item being tested in their hand.

Users were also trained in what to do if the analyser was dropped or damaged. They were advised to buy an interlocked test box from the suppliers so they could test small parts safely. The RPA also agreed to measure the dose rates of the device in use to help the business meet its legal requirements.

By taking this action, the employer ensured that his workers and others were protected.


After media reports claiming some homes were prone to radon, the manager of a local engineering firm was approached by a number of workers wanting assurances that they were not at risk while at work.

The manager used the UKradon website to confirm the premises were in a Radon Affected Area, and that many employees spent their working day in ground-floor rooms, where radon gas is more likely to accumulate.

How the problem was tackled

The manager used HSE's guidance to carry out a radon assessment, which included making measurements. The results showed very high levels (and possibly significant radiation doses) in 2 rooms.

He consulted a radiation protection adviser on how to reduce his employees' exposures. Following this, he contacted a radon remediation specialist, who quickly installed a simple, underfloor sump/extract system to prevent the gas entering the premises.

Repeat measurements showed this was extremely effective in affording long-term protection, as the levels of radon were now very low.

The law

The Ionising Radiation Regulations 2017 (IRR17) – find out more in publication L21 ‘Approved Code of Practice and guidance’.

The Radiation (Emergency Preparedness and Public Information) Regulations 20019 (REPPIR) – find out more about REPPIR

The Control of Artificial Optical Radiation at Work Regulations 2010 (AOR) – find out more about AOR in publication ‘Guidance for Employers on the Control of Artificial Optical Radiation’.

The Control of Electromagnetic Fields at Work Regulations 2016 (CEMFAW) - find out more about CEMFAW

Updated 2023-04-24