APPENDIX ONE
RAW DRIFTER TRACKS
Figure A1: Raw track of drifter 89
Figure A2: Raw track of drifter 90, prior to redeployment
Figure A3: Raw track of drifter 90, after redeployment
Figure A4: Raw track of drifter 91
Figure A5: Raw track of drifter 92
Figure A7: Raw track of drifter 94
Figure A8: Raw track of drifter 95
Figure A9: Raw track of drifter 96
APPENDIX TWO
PROCESSED DRIFTER TRACKS
Figure B1: Processed track of drifter 89
Figure B2: Processed track of drifter 90
Figure B3: Processed track of drifter 91
Figure B4: Processed track of drifter 92
Figure B5: Processed track of drifter 93
Figure B6: Processed track of drifter 94
Figure B7: Processed track of drifter 95
Figure B8: Processed track of drifter 96
APPENDIX THREE
ZONED DRIFTER STATISTICS
Table C1: Zoned drifter statistics

<table>
<thead>
<tr>
<th>Lat</th>
<th>Long</th>
<th>Mean u</th>
<th>Mean v</th>
<th>Vector spd</th>
<th>Scalar spd</th>
<th>Persistence</th>
<th>Stddev u</th>
<th>Stddev v</th>
<th>Variance u</th>
<th>Variance v</th>
<th>Number of Dir (to)</th>
<th>No. of drifters</th>
<th>Residence time</th>
<th>Normalised residence time</th>
<th>Eddy kinetic energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>°N</td>
<td>°W</td>
<td>cm/s</td>
<td>cm/s</td>
<td>cm/s</td>
<td>cm/s</td>
<td></td>
<td>cm/s</td>
<td>cm/s</td>
<td>cm/s</td>
<td>cm/s</td>
<td>°T</td>
<td></td>
<td></td>
<td></td>
<td>cm^2/s</td>
</tr>
<tr>
<td>60.25</td>
<td>-3.5</td>
<td>40.8</td>
<td>12.8</td>
<td>42.7</td>
<td>43.1</td>
<td>0.99</td>
<td>7.8</td>
<td>6.6</td>
<td>60.3</td>
<td>44.0</td>
<td>24</td>
<td>287</td>
<td>3</td>
<td>0.5</td>
<td>672.7</td>
</tr>
<tr>
<td>60.25</td>
<td>-4.5</td>
<td>42.4</td>
<td>18.9</td>
<td>19.6</td>
<td>32.9</td>
<td>0.60</td>
<td>28.3</td>
<td>20.8</td>
<td>799.9</td>
<td>431.7</td>
<td>139</td>
<td>294</td>
<td>5</td>
<td>2.8</td>
<td>615.8</td>
</tr>
<tr>
<td>60.25</td>
<td>-5.5</td>
<td>18.9</td>
<td>5.3</td>
<td>7.4</td>
<td>23.3</td>
<td>0.32</td>
<td>20.5</td>
<td>15.2</td>
<td>418.6</td>
<td>231.1</td>
<td>1001</td>
<td>286</td>
<td>7</td>
<td>20.7</td>
<td>324.9</td>
</tr>
<tr>
<td>60.25</td>
<td>-6.5</td>
<td>7.4</td>
<td>0.6</td>
<td>10.1</td>
<td>29.2</td>
<td>0.35</td>
<td>19.3</td>
<td>23.8</td>
<td>372.6</td>
<td>567.9</td>
<td>1613</td>
<td>275</td>
<td>8</td>
<td>33.4</td>
<td>470.3</td>
</tr>
<tr>
<td>60.25</td>
<td>-7.5</td>
<td>4.5</td>
<td>3.5</td>
<td>5.7</td>
<td>29.1</td>
<td>0.20</td>
<td>23.4</td>
<td>19.4</td>
<td>547.6</td>
<td>375.2</td>
<td>788</td>
<td>198</td>
<td>6</td>
<td>31.6</td>
<td>461.4</td>
</tr>
<tr>
<td>60.75</td>
<td>-8.5</td>
<td>0.1</td>
<td>-0.8</td>
<td>0.8</td>
<td>27.5</td>
<td>0.03</td>
<td>27.3</td>
<td>11.5</td>
<td>744.9</td>
<td>131.7</td>
<td>591</td>
<td>307</td>
<td>3</td>
<td>12.2</td>
<td>438.3</td>
</tr>
<tr>
<td>60.75</td>
<td>-9.5</td>
<td>-2.3</td>
<td>-0.5</td>
<td>2.4</td>
<td>24.6</td>
<td>0.10</td>
<td>18.4</td>
<td>20.1</td>
<td>338.8</td>
<td>402.2</td>
<td>242</td>
<td>174</td>
<td>1</td>
<td>13.6</td>
<td>287</td>
</tr>
<tr>
<td>60.25</td>
<td>-7.5</td>
<td>-3.5</td>
<td>0.8</td>
<td>3.6</td>
<td>27.2</td>
<td>0.13</td>
<td>17.7</td>
<td>24.7</td>
<td>313.3</td>
<td>611.6</td>
<td>1527</td>
<td>78</td>
<td>5</td>
<td>45.4</td>
<td>462.4</td>
</tr>
<tr>
<td>60.25</td>
<td>-6.5</td>
<td>-2.2</td>
<td>-2.2</td>
<td>2.3</td>
<td>16.4</td>
<td>0.14</td>
<td>11.1</td>
<td>15.4</td>
<td>123.1</td>
<td>238.5</td>
<td>984</td>
<td>185</td>
<td>4</td>
<td>20.3</td>
<td>180.8</td>
</tr>
<tr>
<td>60.25</td>
<td>-5.5</td>
<td>0.0</td>
<td>4.6</td>
<td>4.6</td>
<td>23.3</td>
<td>0.20</td>
<td>18.8</td>
<td>19.1</td>
<td>352.9</td>
<td>364.3</td>
<td>1566</td>
<td>359</td>
<td>5</td>
<td>32.4</td>
<td>358.6</td>
</tr>
<tr>
<td>60.75</td>
<td>-4.5</td>
<td>24.6</td>
<td>-1.1</td>
<td>24.7</td>
<td>45.9</td>
<td>0.54</td>
<td>37.1</td>
<td>23.7</td>
<td>1375.1</td>
<td>562.8</td>
<td>503</td>
<td>267</td>
<td>6</td>
<td>10.1</td>
<td>968.9</td>
</tr>
<tr>
<td>60.75</td>
<td>-3.5</td>
<td>35.9</td>
<td>33.0</td>
<td>48.8</td>
<td>58.7</td>
<td>0.83</td>
<td>33.4</td>
<td>16.1</td>
<td>1114.8</td>
<td>258.2</td>
<td>298</td>
<td>313</td>
<td>5</td>
<td>5.9</td>
<td>686.5</td>
</tr>
<tr>
<td>60.75</td>
<td>-2.5</td>
<td>40.1</td>
<td>33.3</td>
<td>52.1</td>
<td>55.6</td>
<td>0.94</td>
<td>23.9</td>
<td>4.9</td>
<td>570.2</td>
<td>24.4</td>
<td>41</td>
<td>310</td>
<td>3</td>
<td>0.8</td>
<td>297.3</td>
</tr>
<tr>
<td>61.25</td>
<td>-1.5</td>
<td>52.7</td>
<td>41.9</td>
<td>67.3</td>
<td>69.7</td>
<td>0.96</td>
<td>8.6</td>
<td>17.3</td>
<td>74.7</td>
<td>299.5</td>
<td>84</td>
<td>308</td>
<td>3</td>
<td>1.7</td>
<td>187.1</td>
</tr>
<tr>
<td>61.25</td>
<td>-2.5</td>
<td>23.0</td>
<td>20.0</td>
<td>30.5</td>
<td>41.9</td>
<td>0.73</td>
<td>32.0</td>
<td>18.9</td>
<td>1022.2</td>
<td>355.7</td>
<td>371</td>
<td>311</td>
<td>5</td>
<td>7.6</td>
<td>688.9</td>
</tr>
<tr>
<td>61.25</td>
<td>-3.5</td>
<td>6.2</td>
<td>9.5</td>
<td>11.3</td>
<td>23.4</td>
<td>0.48</td>
<td>19.2</td>
<td>15.6</td>
<td>370.3</td>
<td>242.4</td>
<td>473</td>
<td>327</td>
<td>3</td>
<td>9.8</td>
<td>306.9</td>
</tr>
<tr>
<td>61.25</td>
<td>-4.5</td>
<td>4.0</td>
<td>7.6</td>
<td>8.6</td>
<td>25.5</td>
<td>0.34</td>
<td>16.3</td>
<td>23.8</td>
<td>267.1</td>
<td>564.6</td>
<td>311</td>
<td>332</td>
<td>1</td>
<td>6.4</td>
<td>415.8</td>
</tr>
<tr>
<td>61.25</td>
<td>-5.5</td>
<td>-1.9</td>
<td>0.3</td>
<td>1.9</td>
<td>11.8</td>
<td>0.17</td>
<td>12.9</td>
<td>9.1</td>
<td>165.3</td>
<td>83.1</td>
<td>1859</td>
<td>80</td>
<td>3</td>
<td>38.4</td>
<td>124.2</td>
</tr>
<tr>
<td>61.25</td>
<td>-6.5</td>
<td>-0.1</td>
<td>-1.4</td>
<td>1.4</td>
<td>10.2</td>
<td>0.14</td>
<td>9.7</td>
<td>10.0</td>
<td>100.4</td>
<td>100.5</td>
<td>1732</td>
<td>176</td>
<td>4</td>
<td>35.9</td>
<td>97.5</td>
</tr>
<tr>
<td>61.25</td>
<td>-7.5</td>
<td>2.3</td>
<td>3.5</td>
<td>4.2</td>
<td>23.0</td>
<td>0.18</td>
<td>16.5</td>
<td>18.7</td>
<td>270.8</td>
<td>348.4</td>
<td>991</td>
<td>326</td>
<td>2</td>
<td>19.5</td>
<td>309.6</td>
</tr>
<tr>
<td>61.25</td>
<td>-8.5</td>
<td>6.8</td>
<td>0.7</td>
<td>8.8</td>
<td>14.7</td>
<td>0.46</td>
<td>11.1</td>
<td>8.0</td>
<td>122.7</td>
<td>63.7</td>
<td>129</td>
<td>276</td>
<td>2</td>
<td>2.6</td>
<td>93.2</td>
</tr>
<tr>
<td>61.25</td>
<td>-9.5</td>
<td>0.9</td>
<td>0.0</td>
<td>0.9</td>
<td>4.8</td>
<td>0.18</td>
<td>1.3</td>
<td>5.3</td>
<td>1.7</td>
<td>27.9</td>
<td>51</td>
<td>87</td>
<td>1</td>
<td>1.0</td>
<td>14.8</td>
</tr>
<tr>
<td>61.25</td>
<td>-1.5</td>
<td>7.7</td>
<td>-4.3</td>
<td>8.8</td>
<td>12.0</td>
<td>0.73</td>
<td>12.1</td>
<td>6.3</td>
<td>146.4</td>
<td>40.0</td>
<td>492</td>
<td>241</td>
<td>2</td>
<td>10.2</td>
<td>93.2</td>
</tr>
<tr>
<td>61.25</td>
<td>-2.5</td>
<td>20.6</td>
<td>-5.6</td>
<td>21.3</td>
<td>23.2</td>
<td>0.92</td>
<td>13.6</td>
<td>10.1</td>
<td>184.5</td>
<td>102.7</td>
<td>279</td>
<td>255</td>
<td>2</td>
<td>5.8</td>
<td>143.6</td>
</tr>
<tr>
<td>61.25</td>
<td>-3.5</td>
<td>25.3</td>
<td>11.4</td>
<td>27.7</td>
<td>35.2</td>
<td>0.79</td>
<td>13.0</td>
<td>20.7</td>
<td>169.6</td>
<td>429.2</td>
<td>226</td>
<td>294</td>
<td>2</td>
<td>4.7</td>
<td>299.4</td>
</tr>
<tr>
<td>61.25</td>
<td>-3.5</td>
<td>3.6</td>
<td>9.8</td>
<td>10.4</td>
<td>36.3</td>
<td>0.29</td>
<td>24.5</td>
<td>27.7</td>
<td>601.8</td>
<td>768.1</td>
<td>194</td>
<td>340</td>
<td>2</td>
<td>4.0</td>
<td>685.0</td>
</tr>
</tbody>
</table>

Table C1: Zoned drifter statistics
FIGURES
Figure 1.1: Bathymetry of the Faroese Channels (from DBDB5 database), showing Marine Laboratory sections and CTD locations for Figure 2.2
Figure 2.1: Principal circulation in the Faroese Channels (from Sherwin et al, 1999). Surface: black arrow – NAW; grey arrow – MNAW; broken line – surface front. Intermediate and bottom: black arrow – AI/NIW; grey arrow – NSAIW; black broken arrow - FSCBW
Figure 2.2: Potential temperature (θ) during cruise 0799S along standard sections across the Faroe-Shetland Channel, regularly worked by the Marine Laboratory, Aberdeen. Upper: Fair Isle - Munken section. Lower: Nolso - Flugga (see Figure 1.1 for locations)
Figure 2.3: Representative θ-S profiles from the Faroese Channels (locations marked on Figure 1.1)
Figure 3.1: Track of the FRV 'Scotia', during cruise 0799S in April and May 1999. Also shown are drifter deployment locations.

Figure 3.2: Measurement locations and drifter deployment sites.
Figure 3.3: Isobaric charts for 29th April to 1st May, 1999 (source: The Met Office)
Figure 3.4: Comparison of CTD and XBT temperature profiles from co-incident station

Figure 3.5: Configuration of the Far Horizon Lagrangian drifter
Figure 3.6: AVHRR sea surface temperature at 0423hrs on 19th May 1999 (courtesy RSDAS)
Figure 4.1: Effects of interpolation on to ½-hourly time step on a complex drifter trajectory segment in the Faroe Bank Channel

Figure 4.2: Hamming and Hanning data windows, using $N = 512$ data points
Figure 4.3 Example spectra from three drifters in the WTR: Upper left – drifter 89, 969 data points; upper right – drifter 92, 771 data points; bottom – drifter 94 3061 data points

Figure 4.4: Response of the Butterworth lowpass filter (cutoff at 30 hrs)
Figure 4.5: Effects of lowpass filtering the drifter tracks: upper – unfiltered track of drifter 94 in the FBC; lower – 30 hr filtered counterpart
Figure 4.6: Verification of drogue loss

1. Raw drifter speed

2. Daily averaged 3 hr wind speed (blue) vs daily averaged 3 hr drifter speed x10 (red)

3. Variance of daily averaged drifter speed

Figure 4.6: Verification of drogue loss
Figure 5.1: Definition of the Faroes shelf water intrusion
Figure 5.2: θ-S profiles from three sites across the Faroes shelf water intrusion (see Fig. 5.1 for locations)
Figure 5.3: XBT *in-situ* temperature (°C) slices through the water column across the Faroes Shelf water intrusion
Figure 5.4 XBT *in-situ* temperature sections (°C) across the Faroe Bank Channel and plan of survey track (lower right)
Figure 5.5 Geostrophic current sections (cms$^{-1}$) across the Faroe Bank Channel, relative to the seabed or 800db whichever is the shallower, and associated current vectors at 100db (lower right). Note: positive currents are into the page.
Figure 5.6: CTD profiles from drifter deployments
Figure 5.7: Drifter trajectories in the Faroe Bank Channel from release on day 121 (1st May) to day 130 (10th May). Each dot represents a new day.
Figure 5.8 30 hour filtered drifter speeds and (where available) temperatures of drifter group released in the north and east of the deployment area.
Figure 5.9: 30 hour low pass filtered speeds and where available temperatures of remaining drifters (see also Fig. 5.8)
Figure 5.10 Filtered drifter trajectories from day 130 until entry into the Faroe-Shetland Channel (or cessation of tracking). + represents start of track segment.
Figure 5.11: Stick velocity vectors of drifters 89 and 92 during mesoscale rotation at the southern end of the FBC
Figure 6.1: 19th May AVHRR sea surface temperature image overlain by drifter tracks in the Faroese Channels.
Figure 6.2: Stick velocity vectors and accompanying temperature from drifter 90 during transit of mesoscale cell associated with meander M2

Figure 6.3: Stick velocity vectors and accompanying temperature from drifter 95 during transit of meanders in the Faroe-Shetland Channel
Figure 6.4: Stick vectors of velocity from drifters 91 and 95 during entrainment in mesoscale features in the Faroe-Shetland Channel
Figure 6.5: Normalised residence times of drifters across the Faroese Channels

Figure 6.6: Mean drifter velocity vectors across the Faroese Channels
Figure 6.7: Eddy kinetic energy \((\text{cm}^2\text{s}^{-2})\) from zoned drifter movements
Figure 7.1: Power spectra from approximately one month of NWOCE ADCP currents
Figure 7.2: Stick velocity vectors of NWOCE ADCP currents
Figure 7.3: Collage of AVHRR sea surface temperature images (courtesy of RSDAS)
Figure 7.4: Frontal mosaic map for period 18th-20th May (days 138-140), with coincident geostrophic velocity time series (cm s\(^{-1}\)) derived from 20th May altimeter track marked in blue.
Figure 7.5: Stick velocity vectors from drifters 89 and 92 during cyclonic rotation prompting the 'eddy' survey
Figure 7.6: XBT temperature slices (°C) during the 'eddy' survey, with drifter tracks overlain.
Figure 7.7: Geostrophic currents along two north-south sections during 'eddy' survey, relative to the seabed or 800m whichever is the shallower. Note: positive currents are into the page. See Fig 3.2 for measurement locations.
Figure 7.8: θ-S profiles along the western section during 'eddy' survey (see Fig. 3.2 for locations)
Figure 8.1: Comparison of potential vorticity ($m^{-1}s^{-1} \times 10^{11}$) across the two Marine Laboratory standard Faroe-Shetland Channel sections. Left: Fair Isle-Munken; right: Nolso-Flugga. Hatched area shows vorticity greater than 0 $m^{-1}s^{-1}$.

Figure 8.2: Configuration of Killworth et al. (1984) baroclinic instability model
Figure 8.3: Sensitivity analysis of baroclinic instability model

Figure 8.4: Time sequence photographs of the rotating tank experiments of Griffiths and Linden (1981), showing the development of baroclinic instabilities and the 'backward' breaking waves.
Figure 9.1: Power spectra from NWOCE-A (upper) and NWOCE-E (lower) ADCP currents, showing strong semi-diurnal signal (12.5 hours period)