Occupational Cancer in Great Britain

Contents

Summary 2

Introduction 3

Estimated number of occupational cancers 3
Estimated current cases 3
Estimated future cases 4

Known carcinogens 5

Other statistical information on occupational cancers 6
Number of occupational cancers compensated under the Industrial Injuries Disablement Benefit (IIDB) scheme 6
Number of occupational cancers reported by consultant chest physicians and dermatologists 6

References 7
Summary

Many work and non-work related factors can cause cancer. Furthermore, cancer cases often present themselves many years after the relevant exposure took place. Therefore, it is difficult to know whether a particular case of cancer has been caused by work. However, it is possible to estimate in a large population the number of cancer cases that could be due to work.

By looking at the number of workers who had been exposed to cancer causing agents in the past and the risk of cancer from these exposures, the research study on the burden of occupational cancer in Great Britain has estimated the proportion of all new cancer cases in the national statistics that could be due to work. Based on the estimated proportion, the study calculated the number of occupational cancer registrations in 2004 and cancer deaths in 2005 in Great Britain. The researchers have also developed methods to estimate the number of occupational cancer cases in the future for a range of scenarios. This will enable us to compare the potential impacts of different interventions on occupational cancer reduction.

Further information on occupational cancer burden research can be found at: www.hse.gov.uk/cancer/research.htm

Key points

- Past occupational exposure to known and probable carcinogens is estimated to account for about 5% of cancer deaths and 4% of cancer registrations currently occurring each year in Great Britain.
- This equates to about 8 000 cancer deaths and 13 500 new cancer registrations each year.
- Past asbestos exposure is the leading cause of deaths from occupational cancer today. Other major causes of occupational cancer include silica, solar radiation, mineral oils and shift work.
- The construction industry has the largest number of occupational cancer cases, with 3 500 cancer deaths and 5 500 cancer registrations each year from this industry.
- Exposure to silica, Diesel Engine Exhaust, solar radiation, shift work and working as painters and welders might become the main causes of occupational cancer in the future, according to the estimate of the research study.

Figure 1: Estimated occupational cancer deaths by cause in Great Britain, 2005

*These are based on many assumptions and subject to considerable uncertainty. Both known and probable occupational carcinogens have been included in the estimates.
Introduction

Cancer starts when abnormal cells in the body grow out of control. There are different types of body cells that can become abnormal and develop into different types of cancers. Many risk factors can cause cancer, including ageing, exposure to radiation, chemicals and other substances at work and in the environment, family history of cancer, and many behaviours and lifestyle factors such as tobacco smoking, poor diet, lack of physical activities and being overweight. Very often, it is difficult to assess the role of occupational exposure in the development of cancer. Furthermore, many cancer cases present themselves many years after the relevant exposures took place (usually at least 10, but in some cases over 35 years). This makes it particularly difficult to link individual cases of cancer to the associated work exposures. As a result, the national cancer registrations and other data sources such as cancer cases reported by specialist physicians as part of occupation ill health surveillance system or cancer cases assessed for Industrial Injuries Disablement Benefit scheme, do not allow an accurate assessment of the overall number of occupational cancers. However, it is possible to estimate the proportion of all cancer cases in a population that are due to work, and use this to estimate the number of occupational cancer cases currently occurring.

In 1981, in their report to the US Congress, Doll & Peto estimated that 4% of cancer deaths in the US were attributable to occupation. For over 25 years since the report, this occupational proportion had been used as the basis to estimate the burden of occupational cancer in Great Britain. In order to obtain an updated estimate to inform the development and prioritisation of occupational cancer control, the Health and Safety Executive commissioned a research study in 2005 to estimate the burden of occupational cancer in Great Britain. The study was led by Dr Lesley Rushton from the Imperial College, London, in consultation with national and international experts in epidemiology, cancer and occupational hygiene.

The cancer burden study considered both the known and the probable carcinogens classified by the International Agency for Research on Cancer (IARC). For example, the study included shift work, a probable carcinogen, even thought its causal link to female breast cancer has not yet been confirmed. Forty-one carcinogens relevant to occupational exposures in Great Britain were included in the burden estimates. The study has also developed methods to estimate the possible number of occupational cancer cases in the future and to compare the potential impacts of different interventions on occupational cancer reduction. The number of occupational cancers occurring now is the result of past exposures to cancer causing agents in the workplaces whereas future cases of occupational cancer will be the consequences of current and future exposure situations.

Estimated number of occupational cancers

Estimated current cases

The updated estimates have shown that about 8,000 cancer deaths and around 13,500 cancer registrations per year in Great Britain could be attributed to past occupational exposure. These represented 5.3% (8.2% for men and 2.3% for women) of all cancer deaths in 2005 and 4.0% (5.7% for men and 2.1% for women) of all newly diagnosed cancers in 2004 in Great Britain national cancer statistics, see Table CAN01A (www.hse.gov.uk/statistics/tables/can01A.xls). This estimate has included both established and probable carcinogens and has been used in most of the published results. However, if the estimate were restricted only to the established carcinogens, the occupational attributable proportion would moderately reduce to 4% for all cancer deaths and 3.4% for all cancer registrations, see Table CAN01B (www.hse.gov.uk/statistics/tables/can01B.xls).

The cancer burden study has shown that past occupational exposure to asbestos is the leading occupational carcinogen, accounting for about half of all occupational cancer deaths and a third of occupational cancer registrations (based on data for 2005 and 2004 respectively). Trends in mesothelioma deaths suggest the
burden of asbestos-related cancer caused by the past occupational exposure is continuing to increase. Other major occupational carcinogens include silica, diesel engine exhausts (DEEs), mineral oils in terms of their contribution to cancer deaths (Figure 1); and shift working, mineral oils and solar radiation in terms of their contribution to cancer registrations⁶, see Tables CAN02 (www.hse.gov.uk/statistics/tables/can02.xls) and CAN03 (www.hse.gov.uk/statistics/tables/can03.xls).

Of all industry sectors, exposures in the construction industry accounted for the largest proportion (over 40%) of the occupational cancer deaths and cancer registrations. In total, about 3 500 cancer registrations per year in this industry are attributed to the past exposure to asbestos and silica, mostly causing lung cancer and mesothelioma. An additional 1 300 cancer registrations per year in this industry are attributed to solar radiation, coal tars and pitches, mostly causing non melanoma skin cancer (NMSCs), see Tables CAN04 (www.hse.gov.uk/statistics/tables/can04.xls) and CAN05 (www.hse.gov.uk/statistics/tables/can05.xls).

Estimated future cases

The cancer burden research study has also developed methods to estimate the number of occupational cancer cases that may occur in the future based on what is known about the current exposed population, the exposure level and the associated risk of cancer. It assumes that current exposure and employment trends continue without additional intervention to actively reduce particular risks. Due to the lack of information on the current exposure situation and the uncertainties caused by the many assumptions used, it is difficult to know with any reliability the estimated number of occupational cancer cases in 2060. However, the statistical model that has been developed may allow us to test out the possible impact of future interventions. The research provides a framework for refining and improving these assessments in the light of new information about interventions and workplace exposures as it becomes available.

The research study has shown that the number of occupational cancers associated with asbestos exposure would probably drop by more than 90% and the numbers associated with silica exposure are estimated to halve by 2060⁷. On the other hand, the numbers associated with Diesel Engine Exhaust (DEE) are estimated to remain the same, and the numbers associated with solar radiation, shift work, PAHs and working as painters might increase.

A ranking of the estimated future cases attributed to the leading carcinogens by industry suggests that the construction industry will probably continue to account for the largest number of occupational cancer cases in the future, though the total number is estimated to reduce by a third by 2060, See Tables CAN06 (www.hse.gov.uk/statistics/tables/can06.xls). Occupational exposures to silica, DEEs, solar radiation, shift work and working as painters and welders are estimated to become the main causes of occupational cancers in the future, see Tables CAN07 (www.hse.gov.uk/statistics/tables/can07.xls).

Intervention scenarios have been used to test out their possible impact on reducing occupational cancer cases in the research study, see Tables CAN08 (www.hse.gov.uk/statistics/tables/can08.xls). However, the types of the interventions tested, for example lowering the exposure standards, have demonstrated only limited impacts on further reducing the number of cancer cases associated with asbestos and DEEs. This is because the research study estimate that most of the future occupational cancers due to these causes will be attributed to large numbers of exposed workers at levels well below the current exposure standards ⁷.

The study to estimate the future occupational cancer cases included only the 14 leading carcinogens and work activities that contributed more than 100 occupational cancer registrations per year. Together, they account for 86% of the total number of occupational cancer cases currently occurring. Other carcinogens, including mineral oils, chromium VI, wood dust, benzene and rubber manufacturing, were not included in the estimate, but are potentially important for cancer prevention⁷.
The number of future cases is estimated based on the assumptions that the current trends of exposure and employment will continue up to 2030 and remain constant thereafter. The estimate is a combined effect of predicted falling occupational exposures, which largely contributes to the reduction of the overall cancer numbers, and the aging population and population growth, which, on the other hand, contribute to the rising cancer numbers. The future burden estimation did not consider the potential impacts of lifestyle changes on cancer risk in the population.

The estimated figures on the current and future number of occupational cancers should be used with care because they are based on many assumptions and subject to considerable uncertainty. The model to estimate future cases may be more useful for comparing the effects of different interventions for particular carcinogens rather than across different carcinogens. The major sources of uncertainty in estimating the occupational cancer cases include the choices of risk estimates from literature for an occupational exposure, the imprecision of the risk estimates, the misclassification of workers in different exposure categories, the lack of reliable information on both the exposure levels and the exposure trends in the GB workforce. More information on the statistical methods used to estimate the future cancer cases is available from previous publications.

Known carcinogens

The International Agency for Research on Cancer (IARC) is part of the World Health Organization. IARC runs a monograph programme evaluating evidence of the carcinogenicity of specific exposures in order to identify environmental factors that can increase the risk of cancer in humans. The monographs published by IARC are recognised as an authoritative source of information on the carcinogenicity of a wide range of human exposures, including chemicals, complex mixtures, occupational exposures, physical and biological agents and lifestyle factors.

Since 1971, the carcinogenicity of more than 950 agents has been evaluated. According to the updated information published by IARC in July 2014, 113 agents have been identified as established human carcinogens (IARC Group 1), 66 agents were probable (IARC Group 2A) and 285 agents were possible (IARC Group 2B) human carcinogens. There are several new Group 1 and Group 2A classifications in the past year that have been linked to occupational exposure.

In June 2014, IARC classified 1,2-dichloropropane (1,2-DCP) as established human carcinogen (Group 1) on the basis of sufficient evidence in humans that exposure to this solvent causes cholangiocarcinoma (a biliary-tract cancer). The most important evidence comes from the investigation of a cluster of cholangiocarcinoma in a small printing plant in Japan. 1,2-DCP is used mainly as a chemical intermediate in the production of other organic chemicals and in paint stripping. It was used as an ink-removal agent in the printing industry in Japan from the mid-1990s until 2012. At the same time, IARC also classified dichloromethane, tetrafluoroethylene, and 1,3-propane sultone as probable human carcinogen (Group 2A) based on limited evidence in humans and sufficient evidence in experimental animals. These newly classified carcinogens are not currently included in our cancer burden estimates. More information is required on the use of these chemicals in the GB workplaces and the potential level of their exposures.

The IARC categories of Group 1, 2A and 2B are to measure the strength of the evidence on whether an agent is carcinogenic to human. The categories do not indicate the level of the cancer risk of an agent. For example, the term "probably" carcinogenic represents a higher level of evidence of human carcinogenicity than the term "possibly".
Other statistical information on occupational cancers

Number of occupational cancers compensated under the Industrial Injuries Disablement Benefit (IIDB) scheme

There are specific forms of occupational cancer that are currently compensable under the Department for Work and Pensions Industrial Injuries and Disablement Benefit (IIDB) scheme. The numbers of people who have been compensated in the past 11 years (2003-2013) are presented in IIDB tables (www.hse.gov.uk/statistics/tables/index.htm#iidb).

On average, around 2000 new occupational cancer cases per year were compensated over the last 11 years. The majority of these were asbestos related cancers, such as mesothelioma (1718 per year on average and 2145 in 2013) and other asbestos related lung cancer (251 per year on average and 285 in 2013). The number of people compensated for non-asbestos related cancers was small at 30 cases per year on average. A similar number of cases were compensated this year including carcinoma of the urinary tract, primary carcinoma of the lung and the skin.

Number of occupational cancers reported by consultant chest physicians and dermatologists

Specialist physicians in the UK have been reporting work-related ill health, including occupational cancer to The Health and Occupation Research Network (THOR www.medicine.manchester.ac.uk/oeh/research/thor/). The number of cases reported during 1998-2013 are presented in the THOR tables http://www.hse.gov.uk/statistics/tables/#thor.

In 2013, consultant chest physicians reported 673 cases of mesothelioma and 100 cases of lung cancer cases. These are similar to the annual average of 732 mesothelioma cases and 105 lung cancer cases reported in the past 16 years (1998-2013). However, there is an observed decrease in the number of mesothelioma cases reported, from 851 per year in the first half of the 16 years to 613 per year in the second half of the duration. It is possible that the number of mesothelioma cases referred to chest physicians have reduced over time. In addition, consultant dermatologists reported an annual average 439 cases of skin cancer in the past 16 years but only reported 248 skin cancer cases in 2013. There has been an observed decrease in the number of skin cancer cases reported by dermatologists since 2010. However, this may reflect systematic changes in the reporting system rather than trends in the cancer occurrence.

For most types of cancer, the number of occupational cases reported by physicians or assessed for compensation purposes is much lower than the estimates from the cancer burden study. This reflects the difficulty in attributing individual cases to occupational exposures. However, comparison of new cases across different data sources has indicated that the reporting and assessment of mesothelioma cases are more complete than other occupational cancer cases due to the strong work attribution of this disease.
References

Other links in the HSE website:

This web page is to provide key statistics on occupational cancer in Great Britain. Please visit
http://www.hse.gov.uk/cancer/ to find out more on how cancer causing hazardous substances can be
controlled. Further information on the tackling the 10 priority areas of occupational cancer can be found in
http://www.hse.gov.uk/aboutus/occupational-disease/

Epidemiologist: Yiqun Chen
Contact: yiqun.chen@hse.gsi.gov.uk

Last updated: October 2014
Next update: October 2015.