The Pesticide Users’ Health Study
Survey of pesticide usage

Prepared by the Health and Safety Laboratory
for the Health and Safety Executive 2013
The Pesticide Users’ Health Study
Survey of pesticide usage

Eileen M Holmes
Harpur Hill
Buxton
Derbyshire
SK17 9JN

The Pesticide Users Health Study is a cohort of nearly 66,000 commercial pesticide users, certified under the 1986 Control of Pesticide Regulations, who had agreed to participate in HSE’s programme of research into their health. A survey to assess the history of pesticide usage among members of this cohort, and to assess the level of self-reported ill health associated with pesticide exposure, was undertaken in two waves during 2004 and 2006.

The response rate (14%) to the questionnaire was very low; this may be partly attributable to a general decrease in survey response rates and to the fact that the main wave of the survey was undertaken at a particularly busy time of year. Respondents listed nearly 2,500 unique trade names and 677 active ingredients. The most common areas of pesticide usage were amenity weed control and the treatment of cereals. Individuals who were often exposed to pesticide concentrate were four times more likely to report ‘ill health’ associated with pesticide use than those exposed to diluted products; additionally individuals who had used pesticides in jobs lasting more than 15 years were more likely to report ‘ill health’ than those working in jobs lasting less than 5 years.

This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the author alone and do not necessarily reflect HSE policy.

HSE Books
ACKNOWLEDGEMENTS

The author wishes to thank Adrian Cassidy, the HSE customer, for his help, support and enthusiasm for this work and the Pesticide Users’ Health Study.

The author also wishes to thank colleagues in the Mathematical Sciences Unit at HSL for their contributions - Claire Collins, Rosemary Gagen-Hill, Carl Gartside, Anna Buttrill, Lorraine Gavin and Claudia Tarr in the Data Entry Team, Simon Rice for his work on the database, and Anne-Helen Harding and Gillian Frost for their support and advice.

Lastly, thanks to Chris Boorman, the Project Manager, for all his hard work and support.
## CONTENTS

1 INTRODUCTION ........................................................................................................ 1

2 METHODS .................................................................................................................. 3
   2.1 The Cohort ........................................................................................................ 3
   2.2 The Pesticide Users Health Study Database .................................................... 3
   2.3 Survey of Pesticide Usage ........................................................................... 3
   2.4 Statistical Methods ..................................................................................... 5

3 RESULTS .................................................................................................................. 6
   3.1 Summary of Pesticide Usage .................................................................... 6
   3.2 Summary of Pesticide Exposure by job .................................................... 7
   3.3 Summary of Types of Pesticides ............................................................... 9
   3.4 Work-related ill health ............................................................................ 10
   3.5 Smoking .................................................................................................. 10
   3.6 Ill health and Pesticide Exposure ............................................................ 11

4 CONCLUSIONS ....................................................................................................... 13
   4.1 Observations from Survey .................................................................... 13
   4.2 Recommendations ............................................................................... 14

5 REFERENCES........................................................................................................... 15

APPENDIX 1 COVER LETTER FOR PUHS SURVEY OF PESTICIDE USAGE17

APPENDIX 2 SURVEY INFORMATION LEAFLET .................................................... 18

APPENDIX 3 SURVEY QUESTIONNAIRE .................................................................. 20
EXECUTIVE SUMMARY

Background

The Pesticide Users’ Health Study (PUHS) was established in 1998 by the Health and Safety Executive to investigate concerns about chronic ill health, which may arise as a result of occupational exposure to pesticides. Individuals who gain certificates of competency in pesticide usage with the City & Guilds Land Based Services (formerly City & Guilds NPTC) are invited to be part of the study. The PUHS database contains information on around 66,000 individuals.

In 1996, before the PUHS database was constructed, a sample of 4,000 individuals identified by City & Guilds Land Based Services were asked about their job history, pesticide usage, health and other relevant factors. The questions on job history and pesticide usage formed the basis of the Survey of Pesticide Usage which was sent to all those on the PUHS database in two phases in 2004 and 2006.

Objectives

The main objectives were to use the responses to the Survey of Pesticide Usage to

- obtain a full job history for those on the PUHS database,
- summarise the extent and nature of current and historical pesticide usage, and
- assess the level of self-reported ill health associated with pesticide exposure among respondents.

Main Findings

Only 14% of individuals responded. This low response rate may be due to a general decrease in response rates to surveys. However some responders also commented that the survey had been sent in the summer, at a time when they were particularly busy.

About 90% of responders had used pesticides, confirming that a large proportion of individuals on the City & Guilds Land Based Services database were actively employed, or had been employed, in pesticide usage.

The most common areas of pesticide usage were amenity weed control and the treatment of cereals.

Responders listed 2,496 unique trade names and 677 unique active ingredients. Some responders commented that the level of detail requested on pesticides and their usage was too high.

For each job, participants were asked if they had ever knowingly been made ill by exposure to pesticides. Individuals who were often exposed to pesticide concentrate were four times more likely to report “ill health” compared to individuals who were exposed to dilute concentrate (Odds ratio 3.97, 95% confidence interval 2.22 to 7.10). Moreover, we observed a significantly increased risk of “ill health” with increasing duration of pesticide exposure. For example, individuals who had used pesticides in a job lasting for more than 15 years were twice as likely to report “ill health” as those who had used pesticides in a job lasting for less than 5 years (Odds ratio 1.89, 95% confidence interval 1.53 to 2.28).
Recommendations

Given the observed association between pesticide exposure and elevated risk of “ill health”, it will be important to explore this relationship further in pesticide users. Therefore, a survey of general health is required to assess possible links between pesticide exposure and chronic ill health.

Any future surveys should consider using a more structured approach to assessing detailed pesticide exposure than was employed by the current survey, particularly for historical exposures. The survey respondents commented negatively on the detail requested, and this was likely to be a factor in the poor response.

A broad range of health conditions and symptoms could be examined in a survey, while more detailed information could be obtained from Hospital Episode Statistics.

Further surveys on the PUHS should be carried out in the winter.
1 INTRODUCTION

A pesticide is a substance, or mixture of substances, used to kill an undesirable plant, fungal or animal pest. This encompasses a broad range of products and includes herbicides, fungicides, insecticides, rodenticides, wood preservatives and many other substances.

Pesticides have been used for many centuries. Inorganic substances such as sulphur, mercury and arsenic were used first: in 1000BC Homer referred to the use of sulphur to fumigate homes, and in 900AD the Chinese were using arsenic to control pests. By the late nineteenth century, plant-derived compounds such as pyrethrum and rotenone, were being used as pesticides. In the early 1900s, inorganic and biological substances were developed and used. During World War II, several insecticides and herbicides, including the organochlorine DDT, were developed and their use became widespread after the war.

Following concerns over the use of organochlorine insecticides, the UK Government began official surveys of pesticide usage on a variety of agricultural and horticultural crops in 1965. The Food and Environment Protection Act was introduced in the UK in 1985 and the registration and monitoring of pesticides became a legal requirement. The Pesticide Usage Survey is carried out by The Food and Environment Research Agency (FERA) and collects data on pesticides used in agriculture, horticulture and food storage. Reports on the surveys can be found at FERA’s website.

Since 1989, anyone applying pesticides on a commercial basis must first gain a certificate of competence in their safe use. The City & Guilds Land Based Services (formerly City & Guilds NPTC) in Stoneleigh is a national awarding body within the land-based sector and is part of the City & Guilds Group. One of the many roles of City & Guilds Land Based Services is to maintain a database of individuals who hold a certificate of competence in the use of agricultural pesticides.

Since pesticides are designed to be toxic to specific living organisms, there are concerns that some may have levels of human toxicity also. In the 1990s, the Health and Safety Executive (HSE) acknowledged that more information was required about the extent and nature of pesticide-related ill health, particularly chronic conditions which may develop after many years of pesticide exposure.

In 1996, the Epidemiology and Medical Statistics Unit (EMSU) at HSE conducted a feasibility study into using the individuals on the City & Guilds Land Based Services database as a cohort who could be contacted regarding health and pesticide usage. As part of the feasibility study in 1996, a survey of pesticide usage was carried out on a sample of 4,000 individuals. Miles Thomas from the Central Science Laboratory (CSL, now FERA) and the project team at HSE designed the survey. The survey found that 92% of responders had used pesticides at some time during their working life, 74% of these had used them within the previous year. It also found that 18% had used pesticides on 40 days or more in the past year. From the survey it was clear that duration of exposure was highly variable and there were a large number of different pesticides being used. In 1998, the PUHS (Pesticide Users’ Health Study) database was constructed to hold data on individuals who had agreed to be contacted by HSE and was designed to incorporate questionnaires and data from further surveys and studies. Following the set up of the PUHS database, a similar questionnaire was sent, in two phases, to the whole cohort of nearly 66,000 individuals. The main aim of the PUHS Survey of Pesticide Usage was to evaluate the extent and nature of current and historical pesticide usage for workers on the

*Http://www.fera.defra.gov.uk/plants/pesticideUsage/index.cfm
PUHS database. The plan was to then link detailed information on individuals’ exposure to pesticides with the study participants’ health outcomes.

In February 2005 the database was transferred from EMSU to the Health and Safety Laboratory (HSL) in Buxton. Individuals on the PUHS database were flagged at the National Health Service Central Register (NHS CR), so that HSL would be notified of any cancer or death registrations among the pesticide users on the database. A report on mortality and another on cancer incidence are in preparation. The mortality report includes a discussion on the role of pesticides and describes a review of the published literature on associations between exposure to pesticides and ill health. Previous studies have suggested links between pesticide exposure and many health effects including Farmers’ lung disease (Hoppin et al., 2007a), chronic obstructive pulmonary disease (Hoppin et al., 2007b), several neurological symptoms (from Parkinson’s disease (Dick et al., 2007) to less specific symptoms such as headaches and dizziness (Alavanja et al., 2004)) and a variety of types of cancer, such as leukaemia (Van Maele-Fabry et al., 2007, Van Maele-Fabry et al., 2008) and prostate (Van Maele-Fabry et al., 2006). Inconsistent evidence exists for associations with other health outcomes, such as non-Hodgkin’s lymphomas (Alexander et al., 2007a) and multiple myeloma (Alexander et al., 2007b). It is important to note that association does not imply causality. Since pesticide users often experience exposure to a range of potential risk factors that may be causal, other known risk factors must be ruled out before a positive association between pesticide exposure and ill health can be demonstrated.

The main finding of the mortality data analysis is that the PUHS cohort had significantly lower all cause mortality than the British population. Specific causes of death (including individual cancers, respiratory diseases and neurological diseases) were examined but these were also generally lower than in the British population. This suggests the presence of a healthy worker effect, i.e. that those employed in pesticide usage will tend to be physically healthier than the general population, or it may reflect a healthy volunteer effect, or a combination of these effects.

This report presents the results from the PUHS Survey of Pesticide Usage including details on the PUHS cohort, the Survey of Pesticide Usage design, the response rate and the statistical methods used. Finally, several recommendations for further research of the PUHS cohort in relation to chronic ill health are made.
2 METHODS

2.1 THE COHORT

The City & Guilds Land Based Services maintains a database of individuals who hold one or more certificates of competence in the use of agricultural pesticides. On the City & Guilds Land Based Services registration form, there is an “opt-in” question, whereby individuals can consent to City & Guilds Land Based Services giving their details to HSE so that they are included in HSE research into occupational health.

In 1996 EMSU initiated a feasibility study on a sample of 4,000 individuals from the City & Guilds Land Based Services database to establish whether a database of licensed agricultural pesticide users could be used to investigate the extent and nature of pesticide-related ill health. Individuals were asked about their pesticide usage, health and other relevant factors. In 1998, the study concluded that the City & Guilds Land Based Services database would be an excellent tool for locating current pesticide users and provided a suitable population on which to base epidemiological studies into the effects of pesticide use (EMSU, 1998).

2.2 THE PESTICIDE USERS HEALTH STUDY DATABASE

In 1999, those who agreed to contact from HSE were entered on the Pesticide Users’ Health Study (PUHS) database. The database was updated in 2003 and transferred to HSL in 2005. The PUHS database contains the personal details of 65,993 individuals including:

- Full name
- Maiden/previous name
- Sex
- Date of birth
- Address
- Employer name, background and address
- Test details: certificate received, date, centre name, county
- National insurance number
- National health service number

Note that information on occupation was not available. Most individuals were matched and flagged (n=63,505, 96%) at the National Health Service Central Register (NHS CR) or the General Register Office for Scotland (GROS). Quarterly reports are received from NHS CR and GROS notifying HSL of any cancer or death registrations for the flagged individuals. A separate report on the standardised mortality rates for this cohort has been written (Brown, 2009).

2.3 SURVEY OF PESTICIDE USAGE

While the information provided by City & Guilds Land Based Services is useful, there are no details about job history, pesticides used or levels of occupational exposure. As part of the feasibility study in 1996, EMSU developed a questionnaire on pesticide usage, which requested information on:
• Job history (i.e. current and all previous jobs)
• Years pesticides were used in each job held
• Main areas of pesticide work in each job
• Working practices (handling of concentrated/dilute products; use of personal protective equipment)
• Pesticide products used in each job
• Smoking habits

About 50% of the 4,000 individuals surveyed responded. It was found that respondents had a wide range of pesticide usage experience, in terms of type and number of pesticides used.

After the PUHS database on 65,993 individuals had been established, the cohort was surveyed on pesticide usage in two batches. In 2004 EMSU posted questionnaires to a random sample of approximately 15,000 cohort members on the database, and in 2006 HSL completed the posting to the remaining individuals traced by NHSCR.

All completed questionnaires were entered on a database by one of six members of the Data Entry Team within the Mathematical Sciences Unit at HSL in 2009. To check data entry quality, a random sample of 251 questionnaires was selected and entered onto a separate database, and the responses for the first three questions were compared. Matching rates of 96%, 93% and 95% were achieved.

Table 1 gives details of the numbers that responded, did not wish or were unable to take part, and the number of questionnaires, which were returned but not completed (i.e. post office returns, individual unknown at address or individual had moved and no forwarding address was available).

<table>
<thead>
<tr>
<th>Response</th>
<th>First wave</th>
<th></th>
<th>Second wave</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percentage</td>
<td>Frequency</td>
<td>Percentage</td>
</tr>
<tr>
<td>Returned questionnaire, completed</td>
<td>2,635</td>
<td>17.6%</td>
<td>6,659</td>
<td>13.5%</td>
</tr>
<tr>
<td>Returned, did not reach individual</td>
<td>22</td>
<td>0.1%</td>
<td>441</td>
<td>0.9%</td>
</tr>
<tr>
<td>Not able/want to take part</td>
<td>25</td>
<td>0.2%</td>
<td>206</td>
<td>0.4%</td>
</tr>
<tr>
<td>No response</td>
<td>12,225</td>
<td>81.8%</td>
<td>40,710</td>
<td>82.5%</td>
</tr>
<tr>
<td>Deceased</td>
<td>43</td>
<td>0.3%</td>
<td>1,348</td>
<td>2.7%</td>
</tr>
<tr>
<td>Total</td>
<td>14,950</td>
<td>100.0%</td>
<td>49,364</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

The overall response rate of 14.8% was disappointingly low, particularly compared to the 50% response rate achieved in the feasibility study. Participation rates in epidemiologic studies have been decreasing over the past 30 years, particularly in recent years (Galea and Tracy, 2007). The large difference in response rates between the feasibility study and the main study would only be partly attributable to this trend given the relatively small time difference between the two surveys. A comparison of responders/non-responders (Table 2) shows responders slightly older than non-responders, and the proportion of males was slightly higher among those who responded. Table 3 shows that those with three or more certificates of competency were more likely to respond than those with only one or two certificates.
Table 2 Comparing responders and non-responders by age and sex

<table>
<thead>
<tr>
<th></th>
<th>Responders</th>
<th>Non-responders</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>9,293</td>
<td>56,696</td>
</tr>
<tr>
<td>Average</td>
<td>51.8 years</td>
<td>48.1 years</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>12.4 years</td>
<td>11.7 years</td>
</tr>
<tr>
<td>Median</td>
<td>50.9 years</td>
<td>45.9 years</td>
</tr>
<tr>
<td><strong>Sex</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of males</td>
<td>8,786</td>
<td>53,167</td>
</tr>
<tr>
<td>Number of females</td>
<td>508</td>
<td>3,532</td>
</tr>
<tr>
<td>% males</td>
<td>94.5%</td>
<td>93.8%</td>
</tr>
</tbody>
</table>

Table 3 Comparing responders and non-responders by numbers of certificates

<table>
<thead>
<tr>
<th>No. of certificates</th>
<th>No. with certificate</th>
<th>No. completed questionnaires</th>
<th>% response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8,141</td>
<td>844</td>
<td>11.7%</td>
</tr>
<tr>
<td>2</td>
<td>48,721</td>
<td>6,792</td>
<td>10.4%</td>
</tr>
<tr>
<td>3</td>
<td>6,526</td>
<td>940</td>
<td>14.4%</td>
</tr>
<tr>
<td>4</td>
<td>1,645</td>
<td>303</td>
<td>18.4%</td>
</tr>
<tr>
<td>5 or more</td>
<td>849</td>
<td>224</td>
<td>26.4%</td>
</tr>
</tbody>
</table>

2.4 STATISTICAL METHODS

Responses to the survey questions were summarised using frequency tables and percentages. Histograms were also used to illustrate the distribution of responses for some questions.

For each job, participants were asked whether they had knowingly been made ill by exposure to pesticides. Individuals who were made ill by exposure to pesticides (“cases”) were compared to a “healthy” control group using logistic regression. The logistic regression analysed each job reported by an individual separately. Non-independence of multiple responses by individuals was taken into account in the analysis by clustering the jobs by individual using robust standard errors. Ill health is often confounded by age, sex and smoking and their relationship with ill health was examined first. To quantify risk of ill health by pesticide exposure, four variables were considered: number of years used pesticides, number of hours per year, number of days per year and the handling of pesticide concentrate. Logistic regression models fitted to these variables were adjusted for age, sex and smoking. All analyses were undertaken in Stata v10.1.
3 RESULTS

3.1 SUMMARY OF PESTICIDE USAGE

The first question in the survey (Appendix 3) asked whether individuals have ever used pesticides in their work. There were 8,223 positive responses out of 9,157 (89.8%), similar to the 92% observed in the feasibility study by EMSU in 1998. Of those who had never used pesticides, 811 (10.7%) did not plan to use pesticides in the future.

Table 4 and Figure 1 show the decade of first pesticide usage.

<table>
<thead>
<tr>
<th>Time period of first pesticide usage</th>
<th>Number of individuals</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1940</td>
<td>1</td>
<td>0.01%</td>
</tr>
<tr>
<td>1940-1950</td>
<td>38</td>
<td>0.5%</td>
</tr>
<tr>
<td>1950-1959</td>
<td>332</td>
<td>4.2%</td>
</tr>
<tr>
<td>1960-1969</td>
<td>1,042</td>
<td>13.2%</td>
</tr>
<tr>
<td>1970-1979</td>
<td>1,661</td>
<td>21.1%</td>
</tr>
<tr>
<td>1980-1989</td>
<td>2,316</td>
<td>29.4%</td>
</tr>
<tr>
<td>1990-1999</td>
<td>1,864</td>
<td>23.7%</td>
</tr>
<tr>
<td>2000-2009</td>
<td>618</td>
<td>7.9%</td>
</tr>
</tbody>
</table>

Figure 1 Decade of first pesticide usage
3.2 SUMMARY OF PESTICIDE EXPOSURE BY JOB

Survey participants were asked about their pesticide exposure in each job, current and previous. Data on 17,227 jobs were received for 8,244 individuals.

3.2.1 Duration of exposure

Figure 2 shows the number of years pesticides were used for 11,731 jobs. (The response rate to this question was 68%, which is quite low). The mean was 12.2 years (SD = 11.0 years), with a median of 9 years. This information is also summarised by individual in Figure 3. For 8,244 individuals, the total number of years of exposure had a mean of 17.3 years (SD = 12.6 years) and median of 16 years.
The survey asked how many hours per year pesticides were used in the job and on how many days. The responses to both these questions were very skewed, particularly hours per year. For 9,211 jobs, a mean of 146.2 hours per year was found, with SD of 311.4 and median of 40 hours per year. For 10,484 jobs, an average of 38.4 days per year was calculated, with SD of 55.8 and median of 20 days per year.

### 3.2.2 Main areas of pesticide work

Responders were asked to select which of the descriptions below summarised their main areas of pesticide work. Note that responders could tick more than one box. Table 5 shows that the most common choices were “Amenity weed control” and “Cereals”. Table 6 summarises the categories ticked and shows that 27% worked in more than one area.

#### Table 5 Main areas of pesticide work

<table>
<thead>
<tr>
<th></th>
<th>Number of jobs</th>
<th>Percentage of jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Agriculture</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereals</td>
<td>3,941</td>
<td>22.9%</td>
</tr>
<tr>
<td>Oilseeds</td>
<td>2,245</td>
<td>13.0%</td>
</tr>
<tr>
<td>Potatoes</td>
<td>1,427</td>
<td>8.3%</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>1,135</td>
<td>6.6%</td>
</tr>
<tr>
<td>Grassland</td>
<td>2,715</td>
<td>15.8%</td>
</tr>
<tr>
<td>Other arable crops</td>
<td>1,462</td>
<td>8.5%</td>
</tr>
<tr>
<td>Hops</td>
<td>123</td>
<td>0.7%</td>
</tr>
<tr>
<td><strong>Horticulture</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchard</td>
<td>582</td>
<td>3.4%</td>
</tr>
<tr>
<td>Soft fruit</td>
<td>494</td>
<td>2.9%</td>
</tr>
<tr>
<td>Mushrooms</td>
<td>76</td>
<td>0.4%</td>
</tr>
<tr>
<td>Outdoor veg</td>
<td>738</td>
<td>4.3%</td>
</tr>
<tr>
<td>Glasshouse</td>
<td>1,427</td>
<td>8.3%</td>
</tr>
<tr>
<td>Hardy nursery stock</td>
<td>1,070</td>
<td>6.2%</td>
</tr>
<tr>
<td>Ornamental</td>
<td>1,416</td>
<td>8.2%</td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golf courses</td>
<td>2,403</td>
<td>13.9%</td>
</tr>
<tr>
<td>Amenity weed control</td>
<td>5,019</td>
<td>29.1%</td>
</tr>
<tr>
<td>Forestry</td>
<td>1,496</td>
<td>8.7%</td>
</tr>
<tr>
<td>Aquatic</td>
<td>289</td>
<td>1.7%</td>
</tr>
<tr>
<td>Other</td>
<td>1,851</td>
<td>10.7%</td>
</tr>
</tbody>
</table>

#### Table 6 Categories of pesticide work

<table>
<thead>
<tr>
<th></th>
<th>Number of jobs</th>
<th>Percentage of jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture only</td>
<td>3,206</td>
<td>26.3%</td>
</tr>
<tr>
<td>Horticulture only</td>
<td>1,122</td>
<td>9.2%</td>
</tr>
<tr>
<td>Other only</td>
<td>4,583</td>
<td>37.5%</td>
</tr>
<tr>
<td>Agriculture + Horticulture</td>
<td>452</td>
<td>3.7%</td>
</tr>
<tr>
<td>Agriculture + Other</td>
<td>921</td>
<td>7.6%</td>
</tr>
<tr>
<td>Horticulture + Other</td>
<td>1,566</td>
<td>12.8%</td>
</tr>
<tr>
<td>Agriculture + Horticulture + Other</td>
<td>358</td>
<td>2.9%</td>
</tr>
<tr>
<td>Ticked at least one box</td>
<td>12,208</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Out of 11,995 responses, 2,572 (21.4%) said they normally worked as a contractor in this job.
For each job, the survey asked whether individuals personally handled pesticide concentrate. Of 12,002 responses, 6,742 (56.2%) said “yes, often”, 4,653 (38.8%) said “yes, sometimes” and 607 (5.0%) said “no, only dilute product”. Table 7 summarises two questions on the use of personal protective equipment in their current job for concentrate and dilute products. The column “Dilute products” included individuals responding “yes, frequently”, “yes, often” and “no, only dilute product” to the question on handling pesticide concentrate (see question 21, Appendix 3). The “Concentrate products” column excluded those who responded, “no, only dilute product”.

Table 7 Personal Protective Equipment and Concentrate/Dilute products

<table>
<thead>
<tr>
<th>Personal Protective Equipment</th>
<th>Number of responses for all jobs for handling concentrate products</th>
<th>Dilute products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloves</td>
<td>5,512</td>
<td>5,168</td>
</tr>
<tr>
<td>Coverall/Apron</td>
<td>4,913</td>
<td>4,587</td>
</tr>
<tr>
<td>Rubber boots</td>
<td>4,631</td>
<td>4,395</td>
</tr>
<tr>
<td>Face shield</td>
<td>4,433</td>
<td>2,780</td>
</tr>
<tr>
<td>Respirator</td>
<td>1,406</td>
<td>1,039</td>
</tr>
<tr>
<td>Other</td>
<td>310</td>
<td>341</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21,205</td>
<td>18,310</td>
</tr>
</tbody>
</table>

There were a further 310 responses for concentrate products and 341 for dilute products where other PPE had been used. Many of these responses mentioned facemasks, waterproof suits and goggles.

For each job, individuals were asked if they worked with any of the following four categories of pesticides: sheep dips, non-agricultural pesticides (e.g. wood treatment), other veterinary medicines, rodenticides. Individuals could tick more than one box and the results are summarised in Table 8.

Table 8 Types of pesticides

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Number of responses for all jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodenticides</td>
<td>2,562</td>
</tr>
<tr>
<td>Non-agricultural pesticides</td>
<td>1,656</td>
</tr>
<tr>
<td>Other veterinary medicines</td>
<td>1,643</td>
</tr>
<tr>
<td>Sheep dips</td>
<td>921</td>
</tr>
</tbody>
</table>

3.3 SUMMARY OF TYPES OF PESTICIDES

Responders were asked to list all the main pesticide products, by trade name or active ingredient, they had used in each job. The Data Entry Team at HSL used a reference list to enter these data to correct for any spelling errors.

There were 65,561 records on 7,240 individuals and 10,588 jobs. These comprised 2,496 unique trade names and 677 unique active ingredients. The mean number of pesticides listed per job was 6.2 (SD 8.4) with median of 4 pesticides and a range of 1 to 104 pesticides. The mean number per person was 9.1 (SD 10.9), with median of 6 pesticides and range of 1 to 141 pesticides.
The most commonly listed active ingredients were Glyphosate (12.4%) and Paraquat (4.2%). None of the other active ingredients accounted for more than 2% of the total. The most commonly listed trade names were “Roundup” (9.1%) and “Gramoxone 100” (3.4%) – other products accounted for less than 2% of total. The large number of different pesticides being used made it difficult to summarise the data any further.

### 3.4 WORK-RELATED ILL HEALTH

For each job, individuals were asked “In this job, were you ever knowingly made ill by exposure to pesticides?” with possible responses “Yes” or “No”. This was the only health-related question.

The number of jobs where individuals thought they had been made ill by pesticide exposure was 729 out of 11,800 jobs (6.2%).

Figure 4 shows the proportion of self-reported occupational ill health by decade in which employment started in that job.

**Figure 4 Proportion of self-reported occupational ill health by decade job started**

![Graph showing proportion of ill health by decade](image)

### 3.5 SMOKING

Smoking is often a confounding factor in studies of ill health. Three questions were asked about smoking status. Of 8,073 responders, 1,126 (13.9%) were current smokers, 2,437 (30.2%) were former smokers, and, 4,510 (55.9%) said they had never smoked. Of those who had ever smoked (current or past), the mean number of years smoked was 19.4 years (SD 12.4 years) and the mean of the average number of cigarettes smoked per day was 15.5 (SD 9.3). Table 9 and Table 10 illustrate the distributions.
### Table 9 Categories of number of years smoked

<table>
<thead>
<tr>
<th>Number of years smoked</th>
<th>Number of responses</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 10 years</td>
<td>1,152</td>
<td>33.3%</td>
</tr>
<tr>
<td>11 – 20 years</td>
<td>1,068</td>
<td>30.8%</td>
</tr>
<tr>
<td>21 – 30 years</td>
<td>684</td>
<td>19.7%</td>
</tr>
<tr>
<td>31 – 40 years</td>
<td>371</td>
<td>10.7%</td>
</tr>
<tr>
<td>&gt;40 years</td>
<td>190</td>
<td>5.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,465</td>
<td>100%</td>
</tr>
</tbody>
</table>

### Table 10 Categories of number of cigarettes smoked per day

<table>
<thead>
<tr>
<th>Number of cigarettes smoked per day</th>
<th>Number of responses</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5</td>
<td>542</td>
<td>16.2%</td>
</tr>
<tr>
<td>6 – 10</td>
<td>815</td>
<td>24.3%</td>
</tr>
<tr>
<td>11 – 15</td>
<td>552</td>
<td>16.5%</td>
</tr>
<tr>
<td>16 – 20</td>
<td>1,023</td>
<td>30.5%</td>
</tr>
<tr>
<td>21 – 25</td>
<td>109</td>
<td>3.2%</td>
</tr>
<tr>
<td>&gt;25</td>
<td>310</td>
<td>9.3%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3,351</td>
<td>100%</td>
</tr>
</tbody>
</table>

### 3.6 ILL HEALTH AND PESTICIDE EXPOSURE

Before looking at ill health and pesticide exposure, possible confounders (age, sex and smoking) were examined. Survey participants described their job exposure history. Overall, 41% of respondents had only one job, but the remaining respondents had up to 11 different jobs. Consequently, age was summarised here as age at the start of each job. Smoking status is unknown during individual jobs and so was summarised as either “ever smoked” (so includes former and current smokers, see Section 3.5) or “never smoked”. The percentages and odds ratios are given in Table 11. The percentages of those reporting illness are very similar for both smoking categories.

### Table 11 Self-reported occupational ill health by age, sex and smoking status

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. jobs made ill</th>
<th>No. jobs not made ill</th>
<th>% jobs made ill</th>
<th>Odds ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age (years)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;20</td>
<td>280</td>
<td>3,320</td>
<td>7.8%</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>21 – 30</td>
<td>286</td>
<td>3,933</td>
<td>6.8%</td>
<td>0.86</td>
<td>0.72 – 1.03</td>
</tr>
<tr>
<td>31 – 40</td>
<td>95</td>
<td>2,003</td>
<td>4.5%</td>
<td>0.56</td>
<td>0.44 – 0.71</td>
</tr>
<tr>
<td>41 – 50</td>
<td>41</td>
<td>1,098</td>
<td>3.6%</td>
<td>0.44</td>
<td>0.32 – 0.62</td>
</tr>
<tr>
<td>&gt; 50</td>
<td>17</td>
<td>540</td>
<td>3.1%</td>
<td>0.37</td>
<td>0.23 – 0.61</td>
</tr>
<tr>
<td><strong>Sex</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>28</td>
<td>490</td>
<td>5.4%</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>701</td>
<td>10,581</td>
<td>6.2%</td>
<td>1.16</td>
<td>0.76 – 1.78</td>
</tr>
<tr>
<td><strong>Smoking status</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoked</td>
<td>392</td>
<td>6,023</td>
<td>6.1%</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Ever smoked</td>
<td>320</td>
<td>4,817</td>
<td>6.2%</td>
<td>1.02</td>
<td>0.86 – 1.21</td>
</tr>
</tbody>
</table>
To quantify risk of ill health from occupational exposure to pesticides, four variables were considered: number of years used pesticides, number of hours per year, number of days per year and the handling of pesticide concentrate. The number of years pesticides were used was divided into tertiles at 5 and 15 years. The number of hours per year and days per year spent using pesticides were similarly split into tertiles at 20 and 100 hours per years, and at 10 and 30 days per year. The lowest tertiles were used as the reference category in logistic regression models. For the handling of pesticide concentrate, the usage of a dilute product was utilised as a reference group. The models were adjusted for age, sex and smoking and the results are shown in Table 12.

<table>
<thead>
<tr>
<th>Table 12 Self-reported occupational ill health by pesticide exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td><strong>Duration of job involving pesticide usage (years)</strong></td>
</tr>
<tr>
<td>≤5</td>
</tr>
<tr>
<td>5 – 15</td>
</tr>
<tr>
<td>&gt;15</td>
</tr>
<tr>
<td><strong>Hours per year</strong></td>
</tr>
<tr>
<td>≤20</td>
</tr>
<tr>
<td>20 – 100</td>
</tr>
<tr>
<td>&gt;100</td>
</tr>
<tr>
<td><strong>Days per year</strong></td>
</tr>
<tr>
<td>≤10</td>
</tr>
<tr>
<td>10 – 30</td>
</tr>
<tr>
<td>&gt;30</td>
</tr>
<tr>
<td><strong>Handle pesticide concentrate</strong></td>
</tr>
<tr>
<td>No, only dilute</td>
</tr>
<tr>
<td>Yes, sometimes</td>
</tr>
<tr>
<td>Yes, often</td>
</tr>
</tbody>
</table>

† Odds ratios adjusted for age, sex and smoking status

Each of the models reported in Table 12 shows an increase in reporting of ill health with increasing duration of jobs involving pesticide exposure. For example, those who have used pesticides in their jobs for more than 15 years are almost twice as likely to report “ill health” compared to those who have used pesticides for less than 5 years.
4 CONCLUSIONS

4.1 OBSERVATIONS FROM SURVEY

In 1996, the Epidemiology and Medical Statistics Unit at HSE conducted a pilot study on pesticide usage in licensed agricultural pesticide users from a sample of 4,000 individuals on the City & Guilds Land Based Services’s database. The response rate was 50%, though comments were made on the survey being too long and being sent out when workers were very busy. When the survey was sent to the 65,993 individuals on the PUHS database, the response rate was much lower at 14%. This may partly be attributable to the global trend of decreasing response rates to surveys (Galea and Tracy, 2007). As in the initial study some responders commented on the timing of the survey but also that the information requested was very detailed; the poor response rate was probably also attributable to these factors. The low response rate may limit the generalisability of the results, although the differences in age and sex distribution between responders and non-responders were negligible.

About 90% of responders had used pesticides, confirming that a large proportion of individuals on the City & Guilds Land Based Services database were actively employed, or had been employed, in pesticide usage. The median number of years exposed in all jobs was 16 years, with a range of 0 to 85 years. The median duration of exposure was 40 hours per year and 20 days per year.

The commonest main areas of pesticide usage reported were amenity weed control and cereals. Responders listed 2,496 unique trade names and 677 unique active ingredients. The wide variety of products available for pesticide usage made it very difficult to summarise or to link with any ill-health variables.

The proportion of respondents who were current smokers was very small (14%), and the majority of respondents were never smokers (56%). As a comparison, the proportion of current smokers among adults aged over 16 years in Britain, was no lower than 26% during the 1990s and was 24% in 2005 (NHS IC, 2009). These statistics suggest that as a group, these workers were at lower risk of the smoking-related diseases, including lung cancer and cardiovascular disease.

Currently, the only health-related information that is available on this cohort of pesticide users is obtained from the NHS Central Register in the form of cancer and death registrations among the PUHS cohort participants. The mortality analysis indicated that the PUHS cohort has significantly lower all cause mortality than the general British population. However, occupational exposure to pesticides has long been associated with chronic ill health, particularly neurological disorders such as Parkinson’s Disease. From the limited health data that was collected in this survey of pesticide usage, a significantly elevated risk of “ill health” was associated with occupational exposure to pesticides, and a positive trend with increasing exposure was observed. Unfortunately, the current data do not allow for more detailed analysis, and further clarification of symptoms or disease/condition would be required.

About 3,000 responders added a final comment in the survey form. Many of them commented on the difficulty in completing the form accurately due to vast amount of information required. The PUHS Survey of Pesticide Usage has shown the wide variation in the types of chemical used, and in the number of pesticides used by an individual.
4.2 RECOMMENDATIONS

A survey of general health among licensed pesticide users should be undertaken in order to investigate potential ill-health issues related to occupational exposure to pesticides. This would help in identifying any important associations with chronic symptoms and conditions, which cannot be detected through the cancer incidence and mortality data.

In the new survey, the questionnaire should provide a simpler, more structured approach to collecting detailed exposure data than in the current survey; this will help respondents and ensure that the data provided are in a consistent format. The survey respondents commented negatively on the detail requested, and this was likely to be a factor in the poor response. If the new survey brings to light any health effects associated with particular pesticide types or activities, then a more detailed follow-up study should investigate these in greater depth. By sending the survey to workers in winter when they are not spraying pesticides, the response rate may also increase.
5 REFERENCES


APPENDIX 1 COVER LETTER FOR PUHS SURVEY OF PESTICIDE USAGE

«Title» «Initial» «Surname»
«ADD1»
«ADD2»
«ADD3»
«ADD4»
«ADD5»
«ADD6»

8 March 2004

Our Ref: Survey no «SURVEYNO»

Dear «Title» «Surname»

PESTICIDE USERS’ STUDY: PESTICIDE USAGE SURVEY

I am writing to ask for your help with a major study by the Health and Safety Executive (HSE) to monitor the health of people who have worked with pesticides.

You may recall that on your application form for a Certificate of Competence in the Use of Pesticides you agreed that the National Proficiency Tests Council (NPTC) could pass your details to HSE to help us with research into pesticide safety. As a result you became part of our Pesticide User’s Study.

We have already shown that the data provided by the NPTC will be very useful for research purposes and HSE is now committed to monitoring the health of Certificate holders like you over a number of years. In order to do this properly, we need more information, about which pesticides you have used, and when and how you used them in the whole of your working life. So now we are asking you for some more help with this Study.

We are conducting a pesticide usage survey and I would therefore be most grateful if you could complete and return the enclosed questionnaire even if, despite having a certificate, you have never used pesticides in the course of your work.

The enclosed information sheet gives more details, including how information about you will be treated confidentially.

I realise that now may be a busy time of year for you but it would help get the study off to a really good start if we could have as many questionnaires as possible back by the end of March.

If you have any queries please do not hesitate to contact us, by telephone, email or letter as described in the attached sheet.

Thank you in advance for your help.

Yours sincerely,

Paul Buckley
Principal Investigator
HSE Pesticide Users’ Health Study
Why is HSE carrying out this survey?

The Health and Safety Executive (HSE) is committed to reducing the risks people face through work activities. Many people work with pesticides or live in areas where they are used and there has sometimes been public concern about whether they might be a risk to people’s health.

The medical evidence available to HSE suggests that when used properly pesticides pose no significant risks to health. However we are aware that there are some gaps in our knowledge.

This survey, which is part of HSE’s Pesticide User’s Study, will look at users’ work with pesticides now, and in the past. We also want to find out about the types of pesticide used and the time spent using them.

We will use this information, with information about users’ health, to provide a further check on pesticide safety.

How is HSE able to contact pesticide users and learn about their health?

The National Proficiency Tests Council, (NPTC), keeps records of users of agricultural pesticides who have Certificates of Competence under the Control of Pesticides Regulations 1986. You and many other pesticide users gave permission for HSE to access the information relating to you for the purpose of medical research into pesticide use. This is how you became part of the Pesticide User’s Study and this is how we have identified you as someone who can help us with this new part of our research.

This is how we are also able to track the health of pesticide users through the national health registers in the UK. This informs us of important health events in the lives of the individuals in the Study.

How many will be included in the new survey?

Over the next five years we will be approaching all pesticide users’ who are on our records and asking them about various aspects of their work with pesticides. In the first phase of the survey we are asking 15,000 pesticide users’ to complete the enclosed questionnaire.

Future research

If you agree to help HSE with this new survey then we will want to contact you on further occasions in the future to ask you for updated information about the pesticides you have used and about safety precautions you have taken at the time. We might also contact you at some time in the future to ask you for more help with other research into pesticide health and safety.

We would always explain at these times what research we wanted to do, and exactly what you would have to do to help. You would always be able to choose at the time whether or not you wanted to help in this way.

We would like to remind you now that you can ask, if you wish, to withdraw from all or part of the Pesticide User’s Study at any time by contacting us using the contact information given below.
Confidentiality

Any information you provide, or that the NHS registers send to HSE, will be treated as strictly confidential. HSE’s research is registered under the Data Protection Act 1998 and your personal data will be protected by this law and by other law protecting the privacy of information obtained through the NHS.

HSE may seek the help of other expert researchers with our research. Other expert researchers may ask HSE for permission to use the information we have collected about you in the Pesticide Users’ Study. However, we will not pass to anyone else any information that can be linked to you as an individual unless you have given us your permission to do so.

We must publish the findings of our research if they are to help improve health and safety. But personal information that could be linked to you, as an individual, will not be made public.

How do I get further information?

We hope that this leaflet makes our intentions clear and that you will agree to participate in the survey.

If you have any difficulty in completing the questionnaire, or feel that you need to ask any further questions, a freephone number and email address are provided. This will be available at all times but outside office hours and at other times when a member of the team is not available it will connect you to an answering machine. All you need to do is leave your name and number and a member of the study team will attempt to speak to you personally within two working days.

Freephone 0800 592450

Email: Pesticide.Study@hse.gsi.gov.uk

Pesticide User’s Study
Epidemiology and Medical Statistics Unit
Room 244 Magdalen House
Stanley Precinct
Bootle
Merseyside
L20 3QZ
APPENDIX 3 SURVEY QUESTIONNAIRE

Pesticide users’ health study: survey of pesticide usage

How to complete this questionnaire

This questionnaire seeks to elicit personal information on your use of pesticides, as well as your personal health. It is not intended to be used for official purposes. 

1. Please complete the questionnaire as fully as possible, even if you have not used many pesticides or do not use them at the moment.
2. We have kept the questions as simple as possible and have only asked relevant questions. 
3. All information you give will be treated in strict confidence.

The following questions (5-16) relate to your current job. If you have no current job please go to question 20.

6. When did you start this job?
   
   7. How many years in this job have you used pesticides?
   
   8. On average, how many hours per year do you use pesticides in this job and how many days?

   (Please answer both if possible, if not, whichever is smaller)

   9. Please tick the appropriate boxes which summarise your main areas of pesticide use (please tick all that apply)

   Agriculture
   
   Ornamental
   
   Orchard crops (apricot, peach, pear, etc)
   
   Grassland and/or forage crops
   
   Other (please specify)

   Horticulture
   
   Ornamental flowers and bulbs

   Other (please specify)

   10. Have you ever used pesticides in your work?

   Yes

   No

   11. Do you have any plans to use pesticides in your work in the future?

   Yes

   No

   12. When did you first use pesticides in your work? (Enter your first use)

   13. Please list the approximate dates of all the jobs you have had in your working life, starting with the most recent.

   Year started

   Year finished

   14. In this job, do you normally work as a contractor?

   Yes

   No

   15. In this job, do you personally handle pesticide concentrates?

   Yes

   No

   16. What personal protective equipment do you normally wear when handling concentrate products? (Please tick all that apply)

   Gloves

   Rubber boots

   Coveralls

   Face shield

   Respirator

   Other (please specify)

   17. In this job, have you ever knowingly been made ill by exposure to pesticides?

   Yes

   No

   18. In this job, do you work with any of the following? (Please tick all that apply)

   Sheep dips

   Non-agricultural pesticides (e.g., weed/treatment)

   Other veterinary medicines

   Rodenticides
### HEALTH & SAFETY EXECUTIVE  HEALTH AND SAFETY LABORA:

The next question (16) asks for details of the pesticide you have used in your current job. Please note:
- a separate entry should be made for each pesticide used - either the full trade name or the active ingredient, whichever is easier
- if you used a mixture of pesticides in a single application, enter the mixture name and do not enter the active ingredients
- if you used a mixture of pesticides in a single application, enter the mixture name and do not enter the active ingredients
- if you answered yes to question 14, please give both the total number of hours you used each pesticide in an average year and the number of days you used it (if you can only give one, whichever is easier for you)
- you may find it helpful to refer to your pesticide data when answering this question

**16. Previous job details:**
Please refer to your answers to question 4.

**Previous job No.**

**Yr started**

**Yr finished**

**17. How many years in this job did you use pesticides?**

**Years**

**18. On average, how many hours per year did you use pesticides in this job and on how many days?**

<table>
<thead>
<tr>
<th>Hours per year</th>
<th>Days per year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:** Please refer to all previous questions (2-15) for guidance.

### HEALTH & SAFETY EXECUTIVE  HEALTH AND SAFETY LABORA:

The following pages relate to previous jobs where you have used pesticides. Please answer one out of questions (16-23) for each job. If you have not used pesticides in any previous job, please go to question 24.

**19. On average, how many hours per year did you use pesticides in this job and on how many days?**

<table>
<thead>
<tr>
<th>Hours per year</th>
<th>Days per year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:** Please refer to all previous questions (2-15) for guidance.

### HEALTH & SAFETY EXECUTIVE  HEALTH AND SAFETY LABORA:

The next question (20) asks for details of the pesticide you have used in this job. Please note:
- a separate entry should be made for each pesticide used - either the full trade name or the active ingredient, whichever is easier
- if you used a mixture of pesticides in a single application, enter the mixture name and do not enter the active ingredients
- if you answered yes to question 18, please give both the total number of hours you used each pesticide in an average year and the number of days you used it (if you can only give one, whichever is easier for you)
- you may find it helpful to refer to your pesticide data when answering this question

**20. In this job, did you normally work on a computer?**

Yes  No

**21. In this job, did you personally handle any pesticides?**

Yes  No

**22. In this job, did you work with any of the following? (Please tick all that apply)**

- Sleep dips
- Non-agricultural pesticides (e.g. wood treatments)
- Other veterinary medicines
- Fumigation

**Notes:** Please refer to all previous questions (2-15) for guidance.

### HEALTH & SAFETY EXECUTIVE  HEALTH AND SAFETY LABORA:

The next question (23) asks for details of the pesticide you have used in this job. Please note:
- a separate entry should be made for each pesticide used - either the full trade name or the active ingredient, whichever is easier
- if you used a mixture of pesticides in a single application, enter the mixture name and do not enter the active ingredients
- if you answered yes to question 22, please give both the total number of hours you used each pesticide in an average year and the number of days you used it (if you can only give one, whichever is easier for you)
- you may find it helpful to refer to your pesticide data when answering this question

**23. In this job, were you knowingly made ill by exposure to pesticides?**

Yes  No

**24. In this job, did you work with any of the following? (Please tick all that apply)**

- Agricultural
- Horticultural
- Other

**Notes:** Please refer to all previous questions (2-15) for guidance.

### HEALTH & SAFETY EXECUTIVE  HEALTH AND SAFETY LABORA:

The next question (25) asks for details of the pesticide you have used in this job. Please note:
- a separate entry should be made for each pesticide used - either the full trade name or the active ingredient, whichever is easier
- if you used a mixture of pesticides in a single application, enter the mixture name and do not enter the active ingredients
- if you answered yes to question 24, please give both the total number of hours you used each pesticide in an average year and the number of days you used it (if you can only give one, whichever is easier for you)
- you may find it helpful to refer to your pesticide data when answering this question

**25. Please indicate the main pesticide products you used in this job:**

<table>
<thead>
<tr>
<th>Trade name / Active ingredient</th>
<th>For Office Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:** Please refer to all previous questions (2-15) for guidance.
25. Have you ever smoked (cigarettes, cigars or tobacco)?
   - Yes, still smoke ☐☐☐ Please go to question 24
   - Yes, but don’t smoke nowadays ☐☐☐ Please go to question 24
   - No, never smoked ☐☐☐ Please go to question 24

26. For how many years have you smoked? ☐☐☐ Years

27. On average, how many cigarettes did you smoke per day?
   - Per day ☐☐☐

28. Are there other members of your family who live with you?
   - (please list all that apply)
     - Yes - spouse or partner ☐☐☐
     - Yes - children ☐☐☐
     - Yes - other ☐☐☐
     - No ☐☐☐

29. Has your name changed (e.g. by marriage)?
   - Yes ☐☐☐ Please specify ☐☐☐
   - No ☐☐☐

30. Has your address changed from that shown on the covering letter?
   - Yes ☐☐☐ Please specify ☐☐☐
   - No ☐☐☐

34. Are there any other comments you would like to make?

Thank you for taking the time to complete this booklet. Please return it in the pre-paid paid envelope provided.
The Pesticide Users Health Study is a cohort of nearly 66,000 commercial pesticide users, certified under the 1986 Control of Pesticide Regulations, who had agreed to participate in HSE’s programme of research into their health. A survey to assess the history of pesticide usage among members of this cohort, and to assess the level of self-reported ill health associated with pesticide exposure, was undertaken in two waves during 2004 and 2006.

The response rate (14%) to the questionnaire was very low; this may be partly attributable to a general decrease in survey response rates and to the fact that the main wave of the survey was undertaken at a particularly busy time of year. Respondents listed nearly 2,500 unique trade names and 677 active ingredients. The most common areas of pesticide usage were amenity weed control and the treatment of cereals. Individuals who were often exposed to pesticide concentrate were four times more likely to report ‘ill health’ associated with pesticide use than those exposed to diluted products; additionally individuals who had used pesticides in jobs lasting more than 15 years were more likely to report ‘ill health’ than those working in jobs lasting less than 5 years.

This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the author alone and do not necessarily reflect HSE policy.