Environmental modelling of antifoulants

Prepared by the Water Research Centre plc for the Health and Safety Executive

CONTRACT RESEARCH REPORT 342/2001
Environmental modelling of antifoulants

S Comber, G S Franklin, D Mackay, A B A Boxall, D Munro and C D Watts
Wrc Medmenham
Henley Road
Medmenham
Marlow
Bucks
SL7 2HD
United Kingdom

Antifoulants are widely used in paints on ship and boat hulls to prevent the growth of fouling organisms. Their physicochemical properties and toxicity mean that they pose a potential risk to biota in the surrounding environment. An assessment of the potential for exposure of biota to antifoulants is therefore an important part of the environmental risk assessment of antifouling products carried out by the Health and Safety Executive’s Pesticide Registration Section.

Estimation of the environmental concentrations of antifouling chemicals requires a mathematical model that uses data on the leaching rate, physicochemical properties and fate of the chemical(s) and on the properties and processes of a particular environment. The available models reviewed during the course of this work were found to be unsuitable for the requirements of assessment of antifoulants for regulatory purposes and a new software model called REMA (Regulatory Environmental Modelling of Antifoulants) has been developed and validated.

The REMA software developed is based on a QWASI (Quantitative Water, Air and Soil Interaction) model using the fugacity concept. It can predict environmental concentrations of antifouling chemicals in marinas and estuaries using only leaching rates and physicochemical property data. The model was validated using existing antifouling chemicals (copper, zinc, Irgarol 1051 and diuron) and produced reasonable agreement between predicted and measured concentrations for water and sediment for two UK estuaries.

This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy.
CONTENTS

SUMMARY 1

1. INTRODUCTION 3
 1.1 Environmental Risk Assessment of Biocides 3
 1.2 Fouling 3
 1.3 Antifoulants 4
 1.4 Environmental Exposure 6

2. ENVIRONMENTAL FATE OF ANTIFOULANTS 9
 2.1 Leaching 9
 2.2 Evaporation 9
 2.3 Sediment-Water Partitioning 9
 2.4 Interactions with Dissolved Organic Matter 11
 2.5 Degradation 11
 2.6 Kinetics 12
 2.7 Prediction of Fate 12

3. ENVIRONMENTAL FATE MODELS 13
 3.1 Types of Models 13
 3.2 Modelling Concepts 14
 3.3 Identification of Fate Models and Assessment 14
 3.4 Available Models 15
 3.5 Overview of Models 21

4. FIELD SURVEYS 23
 4.1 Introduction 23
 4.2 Sampling 23
 4.3 Analysis 26
 4.4 Results 28

5. PARTITIONING EXPERIMENTS 35
 5.1 Irgarol 1051 and Diuron Partitioning Experiments 36
 5.2 Copper and zinc partitioning experiments 44
 5.3 Laboratory experiments used in a predictive capacity 48

6. MODEL DEVELOPMENT 53
 6.1 Model Setup 57
 6.2 Model validation 60

7. CONCLUSIONS 73

8. RECOMMENDATIONS 75
9. ACKNOWLEDGEMENTS

10. REFERENCES

APPENDICES

APPENDIX A LUTTIK MODEL DETAILS 81
APPENDIX B SURVEY DATA 85
APPENDIX C PARTITIONING DATA 91
APPENDIX D DESCRIPTION OF QWASI MODEL 93
APPENDIX E MODEL VALIDATION DATA 95
APPENDIX F REMA MODEL USER GUIDANCE 99
APPENDIX G GWBASIC PROGRAM 109
LIST OF TABLES

Table 1.1 Biocides used in antifoulant paint 4
Table 3.1 Assessment of available environmental models 22
Table 4.1 Comparison of WRc and CEFAS/PML analytical data for four Hamble Samples (dissolved fraction). 28
Table 5.1 Characteristics of sediments used for the partitioning experiments* 36
Table 5.2 Literature log Koc values for diuron and Irgarol 1051 42
Table 5.3 Equilibrium log Koc values for linuron adsorption to the six experimental sediments 42
Table 5.4 Partition coefficients for copper and zinc in estuarine sediments 45
Table 5.5 Correlation coefficients between sediment physico-chemical parameters and Kp for copper and zinc 52
Table 6.1 Environmental compartments and processes required in the Model 53
Table 6.2 Symbols used for Model Parameters and Qualifiers 56
Table 6.3 Input data required for the REMA Antifouling Fate Model 58
Table 6.4 Outline of approach used for antifouling usage survey. 61
Table 6.5 Biocide in antifouling paints : concentration, use and distribution in the UK 62
Table 6.6 Calculated leaching rates for booster biocides present in antifouling paints applied to small vessels. 64
Table 6.7 Concentration data used for model 68
Table 6.8 Marina data used for model 68

LIST OF FIGURES

Figure 2-1 Schematic representation of the processes involved in the partitioning of triorganotin compounds in a 1-octanol-water system. 10
Figure 4-1 Map of sampling points on Orwell Estuary 24
Figure 4-2 Map of sampling sites on Hamble Estuary 25
Figure 4-3 Summary of dissolved concentrations in Orwell Estuary 30
Figure 4-4 Summary of dissolved concentrations in Hamble Estuary 31
Figure 4-5 Sediment concentrations in Orwell 33
Figure 4-6 Sediment concentrations in Hamble Estuary 34
Figure 5-1 Dissolved concentrations of Irgarol 1051 in sediment tests 39
Figure 5-2 Dissolved concentrations of Diuron in sediment tests 40
Figure 5-3 Log Koc calculated for diuron and Irgarol 1051 for the six experimental sediments at the three different suspended solids levels 41
Figure 5-4 Dissolved concentration of 14C-labelled linuron with time for six different sediments 43
Figure 5-5 Kps for copper for six coastal sediments at three suspended sediment levels (with standard deviations) 46
Figure 5-6 Kps for zinc for six coastal sediments at three suspended sediment levels (with standard deviations) 46
Figure 5-7 Percentage of particulates <63 µm in the six coastal sediment samples 47
Figure 5-8 Percentage of organic carbon in the six coastal sediment samples 47
Figure 5-9 Kp for Cu vs percentage of sediment < 63 µm for six coastal sediments 49
Figure 5-10 Kp for Cu vs fraction of organic carbon (foc) in six coastal sediments 50
Figure 5-11 Kp for Zn vs percentage of sediment < 63 µm for six coastal sediments 50
Figure 5-12 Kp (200 g/l SS) for Zn and Cu vs percentage of particles < 63 µm in six coastal sediments 51
Figure 5-13 Kp (200 g/l SS) for Zn and Cu vs fraction of organic carbon (foc) in six coastal sediments 51
Figure 6-1 Schematic diagram of the proposed model 54
Figure 6-2 Structure of the quantitative water-air-sediment interface model which makes up each segment 54
Figure 6-3 Interactions between estuary segments 55
Figure 6-4 Biocide use 62
Figure 6-5 Calculation of the flows through model segments 65
Figure 6-6 Dissolved concentrations in Orwell estuary from initial validation exercise 66
Figure 6-7 Dissolved concentrations in Hamble Estuary from initial validation exercise 67
Figure 6-8 Dissolved concentrations in Orwell Estuary 70
Figure 6-9 Dissolved concentrations in Hamble Estuary. 71
SUMMARY

I BENEFITS

Antifoulants prevent the growth of organisms on boats and ships. A wide range of active ingredients are used including inorganic, organometallic and organic substances. Antifouling biocides are by their very nature toxic so could potentially impact other organisms. An assessment of the potential for exposure is therefore important in assessing the likelihood of environmental impact.

II OBJECTIVES

This study was performed by WRC for the UK Health and Safety Executive and Environment Agency, with the objective of developing, testing and ultimately validating a predictive model which estimates concentrations of antifouling biocides arising from boats in a variety of environments. The study was performed in three phases:

1) assessment of currently available models;
2) development of a new model; and
3) model validation.

III REASONS

The Pesticides Registration Section (PRS) of the Health and Safety Executive are responsible for approval of non-agricultural pesticides under the Control of Pesticides Regulations (COPR). Currently, PRS are committed to reviewing the booster biocides presently approved for use in the antifouling paints in the UK under COPR. There is therefore a need for the development of transparent and validated risk assessment strategies for antifouling products which are acceptable to the ACP, industry and other interested parties.

The Environment Agency has an interest in the potential to model concentrations of chemicals resulting from the use of antifoulants in order to target their monitoring programme. The Agency have therefore provided additional funds for this project.

IV CONCLUSIONS

The fate of antifouling biocides in the environment is dependent on a wide range of environmental and chemical properties and a variety of processes. None of the currently available models that were identified modelled these processes satisfactorily. A new model (REMA – Regulatory Environmental Modelling of Antifoulants) was therefore developed from first principals to provide predictions of antifouulant concentrations in marinas and estuaries, based on the principle of fugacity and using partitioning data obtained from laboratory experiments. Four specific estuaries were chosen and model outputs validated against monitoring data. The model has been shown to produce predicted environmental concentrations that are close to measured values for the selected antifoulants.
V RECOMMENDATIONS

It is recommended that when using the REMA model for other antifoulants or estuaries, particular attention is paid to ensure critical input parameters such as leaching rate, partition coefficients and estuarine flows are as accurate as possible to ensure best possible predictions.

The model has been validated using a limited dataset drawn from monitoring of two estuaries. If the model is applied to other estuaries, which have distinctly different characteristics, then it is recommended that further validation is carried out.
1. INTRODUCTION

1.1 Environmental Risk Assessment of Biocides

The assessment of the impact of chemicals on the environment uses data on the likelihood of exposure of organisms to the chemical and the likely effects of the chemical on an organism. This assessment is usually achieved using data obtained from a combination of experimental investigations and models that simulate the environment of interest.

The Pesticides Registration Section (PRS) of the Health and Safety Executive (HSE) is the regulatory authority in the UK with responsibility (on behalf of the Ministers) for the assessment of non-agricultural pesticides under the Control of Pesticides Regulations, 1986 (COPR). PRS has a commitment to evaluate and review environmental hazard data and produce risk assessments for consideration by the Advisory Committee on Pesticides (ACP).

Non-agricultural pesticides include wood preservatives, surface biocides, public hygiene insecticides and antifouling products. PRS have a commitment to evaluate and review environmental hazard data and produce risk assessments for consideration by the Interdepartmental Secretariat (IDS) followed by the Advisory Committee on Pesticides (ACP) prior to Ministerial consideration. Currently, PRS are committed to reviewing the booster biocides presently approved for use in the UK. Booster biocides are used in small quantities in the antifouling paints applied to the hulls of boats and ships to enhance the antifoulant properties of the paint. There is a need for the development of transparent and validated risk assessment strategies for antifouling products which are acceptable to the committees, Ministers, industry and other interested parties.

1.2 Fouling

Fouling is the successive development of a community of bacteria, protozoa, algae and invertebrates on surfaces exposed to water. When a clean surface is placed in natural water, macromolecules that are dissolved in the water form a layer on the surface; this organic layer facilitates the attachment of bacteria. Protozoa and algae then settle on the bacterial layer where they attract larvae of macroalgae, mussels, barnacles and other invertebrates.

Fouling occurs on all surfaces which are below the water line, including:
- ships hulls
- offshore constructions
- buoys and other small static objects
- mariculture equipment
- sluice doors
- harbour constructions
- inlet pipes of cooling systems
- marine sensors

Fouling occurs in both salt and fresh water but the fouling process is more rapid and intense in salt water than in fresh water. Fouling is a process with negative economic consequences; for example, fouling of ships causes an increase in water resistance and a consequent
increase in fuel demand. Biocides are therefore applied to surfaces in the form of antifouling paints in order to prevent the growth of fouling organisms.

1.3 **Antifoulants**

Antifoulant biocides are applied in paints as a protective top layer on a surface and the paint is formulated to release the biocide(s) slowly over an extended period of time, thus minimising fouling. In general, the majority of antifoulant paints applied are used on ship and boat hulls.

A large number of biocides are used in antifoulant paints including inorganic substances, organometallic and organic chemical compounds (Table 1.1). Antifoulant paints often contain more than one biocide, for example tributyltin oxide and copper can be combined to give good protection during sailing and mooring.

Table 1.1 Biocides used in antifoulant paint

<table>
<thead>
<tr>
<th>Biocide type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganics</td>
<td>copper, cuprous oxide, cuprous sulphide, cuprous thiocyanate, copper bronze powder, copper resinate</td>
</tr>
<tr>
<td>Organo-metallics</td>
<td>tributyltin methacrylate, tributyltin oxide (TBTO), zinc pyrithione, zinc ethylenebis(dithiocarbamate) (zineb)</td>
</tr>
<tr>
<td>Organics</td>
<td>2,4,5,6-tetrachloro isophthalonitrile (Chlorothalonil), 4,5-dichloro-2-n-octyl-isothiazolin-3-one (Kathon, RH 287), 2-methylthio-4-tert-butylamino-6-cyclopropylamino-triazine (Irgarol 1051, Irgarol 1051), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (Diuron), 2-(thiocyanomethylthio)benzothiazole (TCMTB), N-(dichlorofluoromethylthio)-N,N'-dimethyl-N'-phenyl-sulfamid (dichlofluanid)</td>
</tr>
</tbody>
</table>

The major types of antifouling coatings together with a brief description of their properties are outlined below. These coating types will be used when considering efficacy evaluations for antifouling products. This list is not an exhaustive one into which all product applications must be categorised. Applicants may submit novel coating types not covered in this list or they may, in some cases, wish to submit a reasoned case in support of their product application if a product cannot be readily categorised into one of these groups.
Coating type	Description and Properties
Soluble matrix (conventional) | In coatings of this type the biocide(s) have been physically mixed ('freely associated') into a rosin matrix. Upon exposure to seawater the slightly acidic matrix slowly dissolves releasing the biocide(s) into the water. (Seawater is slightly alkaline (pH 8) and the acidic matrix readily dissolves). Continuous dissolution of the coating surface occurs resulting in fresh biocide(s) being released until eventually the film is exhausted. The soluble matrix coatings have poor mechanical properties which limit film thickness and hence the coating lifetime is attainable to approximately 12-18 months. As the matrix rosin is a natural product, batches differ and therefore coating lifetime is unpredictable.

Insoluble matrix (contact leaching or long-life) | Within this type of coating the binder or matrix is insoluble, the biocide(s) is physically mixed into the matrix (often at higher concentrations than is the case with the conventional coatings). As seawater enters the paint film the biocide(s) is released by dissolution and diffusion from within the insoluble matrix. This type of coating has a high initial release rate, which decreases exponentially with time as the biocide(s) has further to travel through the paint film. This release process continues until exhaustion of the coating. The higher mechanical strength obtained with these coatings allow applications of thicker systems and coating lifetimes of approximately 24 months are attainable.

Ablative (self polishing copolymer) TBT coatings | In this type of coating the TBT biocide is chemically bound to the binder of the paint, a methacrylic acid/ methylmethacrylate copolymer matrix into which other biocides can be incorporated. The copolymer hydrolyses at a predictable rate in seawater (depending on temperature, pH and rate of movement of a vessel through water) releasing the biocide(s) into the surrounding water, creating a localised concentration at the paint surface discouraging the growth of settling organisms. This hydrolysis results in a softening of the surface layer of the copolymer and, together with the physical wearing away of the binder by the action of passing seawater, 'polishing', exposes fresh surface layers. This mode of action with biocide release and polishing rate are both dependent on the same (chemical) process. The paint film thus smoothes, reducing drag and turbulence until eventually, through these processes, the whole of the coating is exhausted. After initial rapid release, a steady biocide release is achieved; the life of the coating is proportional to its thickness and is accurately predictable. The copolymer has a high mechanical strength, allowing build up of very thick systems and hence correspondingly long coating lifetimes, typically up to 5 years.
Ablative (polishing copolymer) Tin-free coatings

Coatings of this type rely on soluble medium, such as rosin, in combination with insoluble polymers to form a matrix which wears away physically at a controlled rate. The biocide(s) is mixed into the matrix and released by dissolution at a rate determined by the rate of physical ablation of the polymer. The physical ablation process is less controlled and predictable than the chemical ablation process. Therefore the steady release rate, predictable life, smoothing and recoating properties of the TBT copolymer coatings are difficult to achieve with this group of coatings. These tin-free copolymer coatings have to date demonstrated that dry docking intervals of 3 years can be achieved by the better performers within this group of coatings.

1.4 Environmental Exposure

Whilst the distribution of some antifoulants has been studied in some detail (e.g. Gough et al., 1994; Thomas et al., 1999), for others there is a distinct lack of usage and monitoring data. Consequently, regulators currently assess the likelihood of exposure to antifoulants using environmental fate models. Environmental fate models use mathematical equations that relate environmental input concentrations to chemical fate and transport processes in order to predict environmental concentrations, fate, transport and persistence. By making simple assumptions regarding the processes that occur in the environment and using a set of parameters that describes the environment of interest, the models can estimate the fate and behaviour of a compound in that environment.

In the UK, the fate of antifoulants is currently modelled using an approach developed by Luttik et al. (1992); this model is detailed in Appendix A. The input data for the model includes:- information on the flux of active ingredient over a period of time, number of yachts in a basin, mean ship deck area, volume of paint per yacht and a number of properties of the active ingredient. Results to date indicate that the model grossly over-estimates exposure concentrations for active ingredients in antifoulant paints. Possible reasons for this over-estimation include: inaccurate or unsuitable input parameters; important fate processes are ignored; the influence of environmental factors is not adequately considered.

WRc have therefore been commissioned by the UK Health and Safety Executive (with additional funding from the Environment Agency) to develop, test, modify and ultimately validate a predictive model which will calculate environmental concentrations of antifoulants arising from boats in a variety of environments. The project is being performed in three distinct phases, namely:

1. assessment of models that are currently available and are suitable, at least in principal, for modelling the fate of antifoulants;

2. adaptation of existing models or development of new models; and

3. model validation.
This final report describes the work carried out over the course of the project. The major factors that affect the environmental fate of active ingredients from antifouling paints were reviewed as well as a number of available environmental fate models. The identified models were assessed to determine their suitability for predicting exposure concentrations for active ingredients in antifoulants. On the basis of the results of the model assessment, a new model (REMA; Regulatory Environmental Modelling of Antifoulants) was developed from first principles. Experimental data was obtained using laboratory and field studies, in order to validate the developed model.
2. ENVIRONMENTAL FATE OF ANTIFOULANTS

On entering an aquatic system a chemical will be transported and distributed between the major compartments within the system, namely: sediment; water; suspended sediment and biota. The transport and distribution of the chemicals in the environment is dependent on a range of factors including the nature of the chemical and the characteristics of the receiving water.

Antifoulants cover a diverse range of chemical classes (including inorganics, organometallics and organics) and are used in a wide range of scenarios including freshwater, marine and estuarine environments. To accurately determine the fate of antifoulants, it is necessary to consider the effects of a wide range of variables and processes. A number of the important processes are detailed below.

2.1 Leaching

Antifouling biocides leach out of the paint into the water over time. The rate at which this occurs (see above) is dependent on the characteristics of the biocide and paint matrix. The amount of antifouling biocide that enters the aquatic environment will, therefore, be dependent on the leaching rate of the biocide from a particular paint type.

2.2 Evaporation

For many organic compounds, evaporation can be an important environmental pathway. Volatilisation is dependent on a number of factors including the compound’s vapour pressure and solubility (which are used to derive the Henry’s Law Constant, a measure of partitioning between air and water) and the hydrodynamic characteristics of a particular environment. Compounds with low aqueous solubility and a high vapour pressure will have a much greater tendency to partition to the gas phase than soluble compounds with a low vapour pressure.

Liss and Slater (1974) developed a simple model that describes the process of evaporation from the aqueous phase, through the air-water interface to the atmosphere. The model calculates fluxes of chemicals based on concentrations in the water and air phases and the Henry’s Law Constant. The accurate determination of the Henry's Law Constant is often problematic (particularly for compounds with very low solubility or very low vapour pressure); hence, the calculation of fluxes is difficult for certain compounds. Fluxes are also influenced by turbulence factors in the air and water phases and so the prediction of evaporative fluxes is complex.

2.3 Sediment-Water Partitioning

In addition to affecting the volatility of a contaminant, solubility also influences the partitioning of a contaminant between the water column and stream sediment. Whilst polar (hydrophilic) compounds will tend to dissolve in the water, non-polar (hydrophobic) compounds will tend to partition to and accumulate in the sediment. The ratio of the concentration of a compound in the solid phase (Cs) to the concentration in the water phase (Cw) is the partition coefficient Kp:

\[Kp = \frac{Cs}{Cw} \]
The value of K_p is dependent on the sediment characteristics and the physico-chemical properties of a compound. For organic compounds K_p is primarily dependent on the fraction of organic carbon in the sediment (f_{oc}) and an organic-carbon water partition coefficient (K_{oc}) provides a better indication of the partitioning:

$$K_p = f_{oc} \times K_{oc}$$

However, other factors may influence partitioning including the organic carbon type, sediment pH and dissolved oxygen content. In addition to partitioning to aquatic sediments, contaminants can also partition to suspended sediments which can then be transported long distances before being incorporated into bed sediments. Concentrations of contaminants in the water column can also be influenced by resuspension and redeposition processes, which increase the residence time and bioavailability of contaminants in the water column.

Studies have indicated that one of the critical factors in the assessment of organotin antifoulant compounds in water, sediment and food webs is the uncertainty in their partitioning behaviour. One possible reason for this is that organotins can exist in water as either cationic and/or a number of neutral species which may exhibit different partitioning characteristics. The nature and relevant proportions of the neutral and cationic species is dependent on the solution chemistry (i.e. pH, type and concentrations of anions present). Consequently, in order to assess the partitioning of organometallic compounds between water and sediment, their aqueous speciation and partitioning between water and sediment and the characteristics of the aquatic system need to be known.

Arnold et al (1997) have proposed a model for describing the partitioning of triorganotin compounds between water and octanol, the species and equilibria considered are illustrated in Figure 2-1.

![Figure 2-1 Schematic representation of the processes involved in the partitioning of triorganotin compounds in a 1-octanol-water system.](image)

Partitioning of organotin compounds to bed sediments is further complicated by the sorption of the cationic species from aqueous solution onto mineral surfaces. Clay minerals and metal oxides bearing a net negative charge adsorb triorganotins under environmentally relevant conditions; sorption to clay minerals is thought to be due to cation exchange processes. The
type of exchangeable cations and pH are probably the most important factors controlling sorption of triorganotins in environments rich in clays and silicates.

A quantitative prediction of the sorption of organotins to natural sediments is therefore very difficult, mainly due to the heterogeneity of naturally occurring mineral surfaces and a lack of understanding of those processes controlling the interactions of organotins with organic matter. However, a very rough estimate of partitioning could be obtained by considering only adsorption of the organotin cation to mineral surfaces and the partitioning of neutral hydroxyl species into organic matter using the following equation:

\[
K_d \text{ tot} = K_d \text{ min} + K_d \text{ oc} = f_{\text{min}} \times K_{\text{min}} + f_{\text{oc}} \times K_{\text{oc}} \quad \text{Equation 1}
\]

Where:
- \(K_d\) = the sediment : water partition coefficient;
- \(K_d \text{ min}\) = the sediment mineral : water partition coefficient;
- \(K_d \text{ oc}\) = the sediment organic carbon : water partition coefficient;
- \(f_{\text{min}}\) = the weight fraction of minerals bearing negatively charged surface sites (e.g. clay minerals, silica, manganese oxides);
- \(K_{\text{min}}\) = adsorption coefficient of organotins at such minerals;
- \(f_{\text{oc}}\) = the fraction of organic carbon and
- \(K_{\text{oc}}\) = the partition coefficient into organic carbon.

2.4 Interactions with Dissolved Organic Matter

A number of studies have indicated that sediment-water partitioning observed in the field can not always be replicated by laboratory experiments or by predictions. One cause of these differences is the effect of dissolved organic matter (DOM). DOM has been shown to increase the effective solubility of some compounds, probably resulting in a reduction in partitioning to suspended sediments, bed sediments or air. Possible effects of DOM include the incorporation of contaminants into micelles, the lowering of water surface tension, or direct partitioning of a contaminant between the water and organic material. Binding of contaminants to DOM is related to their octanol-water partition coefficient (Kow).

Natural organic matter in the aquatic environment covers the complete spectrum in water from dissolved organic macromolecules (such as humic and fulvic acids and polysaccharides) through colloidal material to microparticulates. These forms are mainly composed of carbohydrates and peptides originating from micro-organisms and plants. The presence of DOM, colloidal material, macromolecules and microparticulates can all effect the partitioning of contaminants (particularly those with low solubility).

2.5 Degradation

Following its release into the environment, a chemical may undergo various chemical reactions (abiotic degradation) or biochemical reactions (biotic degradation) or a combination of both. In order to characterise and quantify the degradation it is necessary to distinguish between the various types of reactions and processes.
2.5.1 Abiotic degradation

The most common abiotic degradation processes are photochemical degradation, redox reactions and hydrolysis.

Hydrolysis involves the attack of a compound by a water molecule or hydroxide ion. Hydrolysis is most common in organic compounds with ester, epoxide, alkyl halide, amide, carbamate or organophosphate groups.

For primary photochemical degradation to occur, the emission spectrum of the sun needs to overlap with the absorbance spectrum of the pollutant (although some compounds photodegrade even when this fit is not observed). Photodegradation is dependent on the intensity of light reaching an aquatic system and the dispersion within that system, once contaminants reach the deeper zones of aquatic systems or become associated with sediment they are probably resistant to photodegradation.

2.5.2 Biotic degradation

Biodegradation by aquatic micro-organisms can play an important role in the removal of organic pollutants from a system. In aerated water columns and in oxic surface sediment, biodegradation will proceed aerobically. However in anoxic sediments, anaerobic biodegradation is the most important process. In order to quantify the biodegradability of a chemical in an aquatic system it is necessary to determine the rates of anaerobic and aerobic degradation and to determine the distribution of the chemical between the water column, surface sediment and the bottom sediment.

2.6 Kinetics

The distribution of a compound in an aquatic system at any moment in time will also be influenced by the rates at which the physical, chemical and biological processes described above occur. This information is probably critical for assessing the distribution of a pollutant pulse caused by, for example, a spill. However, information on the rates of a number of the processes is probably not necessary for determining the fate of chemicals that are discharged continuously, such as antifouling biocides.

2.7 Prediction of Fate

In order to predict accurately the fate of antifouling biocides in the environment it is therefore necessary to consider a number of processes and chemical and environmental properties. This can be achieved using environmental fate models that are made up of a collection of mathematical equations that describe the processes.
3. ENVIRONMENTAL FATE MODELS

Environmental fate models use combinations of mathematical equations to relate environmental input concentrations to chemical fate and transport processes in order to predict environmental concentrations. If assumptions are made concerning the processes in the environment, the models can theoretically predict the behaviour of a compound using a set of parameters that describe the environment of interest and the physico-chemical properties of the contaminant.

3.1 Types of Models

Models are developed to predict the overall fate and transport of a substance in a whole environment or in more detail in a sub-component of the whole environment. A wide range of models are available which have been developed for a number of uses and environmental scenarios. These include:

- whole-environment models: predict the concentration of a chemical in every environmental compartment.
- surface water models: concentrate on surface water processes and deal with water, biota and sediment as the main environmental phases; they can include interactive processes with other environmental phases.
- run-off models: compute chemical concentrations in runoff water from land.
- soil fate models: predict the fate of a compound in soil; a number of soil compartments are usually included in the model, including organic soil matter, inorganic soil matter, soil pore water and root material.
- groundwater models: predict the fate and transport of a chemical within a groundwater flow.
- atmospheric models: predict the effect of atmospheric processes on the distribution of chemical pollutants.
- process models: predict the fate of a compound during an environmental process; the models are often used as sub-models within larger models (e.g. whole environment models or surface water models).
- biotic models: express mathematically the processes by which organisms interact with the environment. Processes that are modelled include the absorption of a compound during respiration or via ingestion and the release of compound via metabolism and egestion. Examples of biotic models include a single fish bioaccumulation model or a whole food web model. The models can be used to relate tissue concentrations to concentrations in water, sediment, soil and air.
• pharmacokinetic models: used to model the distribution of a compound within an organism. The approaches used calculate the disposition of a compound between tissues in an organism as it is transported via diffusion or blood flow. These models are used extensively in the pharmaceutical industry.

• exposure models: used to determine exposure experienced by humans and other organisms; normally multimedia in nature.

3.2 Modelling Concepts

The mass balance equation states that the change in inventory of a chemical in a particular compartment (e.g. a river or soil) will equal the sum of inputs to the compartment less the sum of the outputs. The inputs can include advective flow, diffusion from other compartments, direct discharges or formations from other chemical compounds. Outputs may include flow, degradation processes and diffusion to another compartment. In order to model the fate of a compound in the environment, it is necessary to develop expressions, equations or quantities for each of the terms in the mass balance equation.

Environmental compartments such as water or surface sediment are usually considered to be well mixed and thus fairly homogeneous in concentration. If more detailed modelling is required (e.g. to account for spatial variability in sediment characteristics), a compartment can be split up into further compartments. As the number of compartments increases, the predictions probably more closely reflect behaviour in the real environment. However, the mathematics become considerably more complex and more input data is required.

Transport and transformation processes, such as evaporation, sedimentation, biodegradation or photolysis, can be described by a series of equations. However, these equations can vary with changes in variables such as temperature, pH, (sun)light intensity or microbial activity. Whilst reliable data for inclusion in these equations can be obtained from laboratory experiments performed under controlled conditions, relating these to the real environment is often problematic.

Inputs of a contaminant into a compartment are determined by the discharges to the compartment (which may be from adjacent compartments, industrial sources, spills or leaching from groundwater). The magnitude of the discharge rate influences the chemical concentration and thus its fate.

Once the rates or rate expressions are defined for the various terms in the mass balance equation for a particular compartment, the equations can be solved to provide estimates of environmental concentrations of a contaminant. Concentrations can be determined either at equilibrium or at a moment in time. Concentrations of a chemical at equilibrium can usually be determined based on knowledge of the partition coefficients of the chemical. To calculate environmental concentrations at a moment in time, rate constants for the different processes determining fate are required.

3.3 Identification of Fate Models and Assessment

A literature review was performed using WRC in-house and external databases to identify models that are currently available for assessing the fate of chemicals in aquatic systems. In
addition, an Internet search was conducted to identify other models that are not cited in the literature. On the basis of these searches, 22 models were identified.

Information and, where possible, the software for each of the models was obtained. The models were then assessed against a number of criteria in order to determine their suitability for modelling the fate of antifouling biocides. The criteria were that the model:

1. must provide acceptably accurate predictions for all antifoulant types with different properties, namely inorganics, organometallics and organics;
2. should cover the major factors and processes that determine the fate of each antifoulant type in an appropriate manner;
3. should be simple to use and allow simple, interactive processing of results;
4. input data requirements should not be unduly complicated and should be readily available to the Health and Safety Executive;
5. approach should be appropriate, clearly defined and soundly based for all of the antifoulant types;
6. source code should be obtainable;
7. should have been validated for at least some antifoulant biocides.

A brief summary of each of the models is given in Section 3.4 and the results of the model assessment are summarised in Table 3.1 and discussed in Section 3.5.

3.4 Available Models

3.4.1 Fugacity models

These use the concept of fugacity to describe how an organic compound partitions between a number of environmental compartments. The fugacity of a chemical in a given phase can be regarded as its tendency to escape from that phase to another. Consequently, when two phases are at equilibrium, their fugacities are equal (Mackay et al, 1983, 1986).

There are a number of fugacity (sometimes referred to as Mackay) model levels, the complexity of the model increasing with level.

Level 1 fugacity model

This model assumes a single input of a chemical into a non-reacting system. The compartments are at steady-state equilibrium and no flow occurs.

The model calculates the amount and concentration of a contaminant in each environmental compartment on the basis of a number of input parameters, namely environmental temperature, solubility, Log Kow and vapour pressure.
Level 1 calculations provide a rough guide to the likely environmental distribution of a contaminant within an ecosystem.

Level 2 fugacity model

Level 2 calculations represent a situation where a compound is present in an equilibrium steady state flow system. The compartments are in equilibrium with each other and there is a constant inflow of the compound into the system, as well as reactive and mechanical removal processes. The model calculates specific and total reaction rates and percentage transformations. In addition to the properties required for a Level 1 calculation, the Level 2 model requires the input of data concerning emissions into the system, first order reaction rates and advection currents.

The approach provides a rough guide to environmental persistence and the effectiveness of removal processes in the various compartments. Some studies have indicated that level 2 model predictions for some contaminants are within an order of magnitude of measured values.

Level 3 fugacity model

The level 3 calculations model a non-equilibrium steady state flow system where there is transport between the various compartments as well as continuous input and removal processes. The model predicts the effects of intercompartmental transport on the partitioning and persistence of a contaminant, but chemical inputs must be specified for each compartment. Predictions of the fate of a contaminant are more realistic since a non-equilibrium situation is modelled.

Level 4 fugacity model

Level 4 involves both a non-steady state flow and a non-equilibrium system. The model can be used to assess the long term partitioning of a contaminant and ecosystem recovery after releases of contaminants have stopped.

QWASI

Quantitative Water, Air, Sediment Interaction (QWASI) fugacity models are modified versions of the Mackay models. Compartment parameters are altered to realistically simulate an environment at a specific location in order to obtain at least semi-quantitative predictions of local chemical fate.

3.4.2 **EXAMS**

The Exposure Analysis Modelling System (EXAMS) was developed by the United States Environmental Protection Agency (USEPA) to evaluate the behaviour of a contaminant and its transformation products in the aquatic environment. The system uses differential equations to represent loadings, transport and transformations, as well as the principle of conservation of mass in order to calculate the fate of a chemical. The model can be used in a steady state or
dynamic mode which allows the use of 3 temporal models within the model framework, namely:

- steady-state analysis - long term consequences of continued chemical releases
- initial value problems - detailed examination of immediate consequences of chemical releases
- intermediate-scale resolution of events over a period of years - including seasonal data, effects of variable loadings.

An environment can be modelled using a maximum of 25 aquatic compartments but air and biota are not included. Air is regarded as a chemical sink whilst contaminants taken up by biota are considered a part of the water column.

Four sets of data are required for an individual simulation; these are - chemical data, environmental data, information on loadings and on products. The model requires extremely detailed information in order to utilise fully its capabilities. This includes information on ion and species-specific rate constants, light absorption across a wide range of wavelengths and quantum yields for individual ions and species.

Detailed information is also required on the compartment (environmental) parameters in order to utilise fully the system. These values include - latitude, longitude, altitude, atmospheric ozone concentration and climatic conditions.

The model calculates the distribution of a contaminant, including the mass, percentage and concentration in each compartment. The program allows the results to be presented graphically including vertical and longitudinal concentration profiles and kinetic data plots.

3.4.3 WASP5/DYNHYD5

The Water Quality Analysis Simulation Programme (WASP5) is a USEPA generalised modelling framework that simulates contaminant fate in surface waters. Based on a flexible compartment modelling approach, WASP5 can be applied in 1, 2 or 3 dimensions. The programme is designed to permit easy substitution of user-written routines into the programme structure. The model has been used to study biochemical oxygen demand, dissolved oxygen dynamics, bacterial contamination and the movement of toxic chemicals. DYNHYD5 is a simple hydrodynamic model that simulates variable tidal cycles, wind and unsteady inflows. It produces output files that can be linked to WASP5 to supply flows and volumes to the water quality model.

3.4.4 SMPTOX

The USEPA regulatory programme sponsored the development of an interactive computer programme for performing waste load allocations for toxics. This programme is known as Simplified Method Program - Variable Complexity Stream Toxics Model (SMPTOX). The model provides user-friendly access to a technique for calculating water column and stream bed toxic substance concentrations from point source discharges into streams and rivers. It predicts pollutant concentrations in dissolved and particulate phases for water column and bed sediments and total suspended solids. It contains a full screen editor to facilitate the entry
and modification of inputs; separate simulation routines are provided for model calibration, waste load allocation and sensitivity analysis. High resolution graphics of the model results are given during the programme operation.

3.4.5 CHEMSEE

CHEMSEE is a flexible “model construction kit” for the modelling of chemical processes in lakes. Underlying the programme is the mathematical description of the behaviour of a substance in terms of a one-dimensional vertical model. Such a model, in which horizontal concentration differences are neglected, is suitable for the description of reactive substances in deep lakes. Any number of variables can be defined by the user to represent concentrations of substances in the water column and sediment. Transport and transformation processes (e.g. loading, adsorption, sedimentation, air-water and sediment-water exchange and chemical reactions) can be defined interactively. The programme can be applied in the following ways:

- set up of dynamic models using information on a system of interest
- discrimination between different hypotheses that explain measured concentrations of substances of interest
- identification of relevant transport and transformation processes

3.4.6 CemoS

CemoS is a programme for estimating exposure concentrations of hazardous chemicals. It is based on the fugacity approach but uses partition coefficients instead of fugacities. The model calculates steady state concentrations in water, air, soil, sediment, suspended solids and fish and assumes that equilibrium is reached immediately. All compartments are regarded as homogeneously intermixed.

3.4.7 E4CHEM

The Exposure Estimation for Potentially Ecotoxic Environmental Chemicals Programme describes the fate and behaviour of compounds in the environment. A number of environmental compartments are modelled.

3.4.8 CE-QUAL-W2

CE-QUAL-W2 is a 2 dimensional (longitudinal/vertical) hydrodynamic and water quality model. It has been successfully applied to over 100 systems, including rivers, lakes, reservoirs and estuaries. The current version includes only eutrophication related water quality state variables. However, the inclusion of the variables required for modelling the fate of antifoulants is probably relatively straightforward.
3.4.9 ICM/TOXI

ICM/TOXI can be used for 1, 2 and 3 dimensional applications. Unlike CE-QUAL-W2, ICM/TOXI does not include hydrodynamics. Instead, the model takes flows and diffusivities generated by a chosen hydrodynamic model and uses these to drive the transport algorithm. Both the water column and bed sediments are modelled and various chemical species and phases are accounted for through equilibrium partitioning. The model has the option to either compute a dynamic solids balance (for three classes of solids) within the water column and bed or to read in suspended solids information and the associated water column bed fluxes from the external sediment transport model CH3D-SED. It includes the kinetic algorithms in the USEPA’s TOXIWASP for contaminants but is more state of the art, in terms of the transport algorithms than WASP. The programme is also more flexible. The software, however, is not available at present since it is currently under test and the associated documentation is being prepared.

3.4.10 RECOVERY

RECOVERY is a screening level model for contaminants; it is much simpler than ICM/TOXI and easier to use. It assumes a zero dimensional, fully mixed water column, so no hydrodynamic information is required. It is a simple point model and requires information on residence time in the water column. It uses a steady state solids balance for sediments and water column and the bed is modelled as a single column with 1.0 cm layer. RECOVERY is a PC-based model with a graphical user interface.

3.4.11 TOXFATE

From the limited amount of data available on this model, it appears to be similar to WASP4 i.e. it calculates in some detail the aquatic fate of organic pollutants. However, unlike WASP4, TOXFATE uses a less complex chemical transformation procedure (e.g. only neutral organic compounds are considered) and biological uptake is calculated directly by the model. Fish, plankton and plant bioconcentration processes are considered separately and are calculated using terms such as faecal deposition of plankton, fish predation rate on plankton, and respiration rates. TOXFATE models the main processes that affect chemical fate.

3.4.12 MICHRIV

MICHRIV is a simple, interactive, steady-state model for simulating the fate of organic chemicals and metals in rivers. The model considers transport and transformation by first order kinetics of dissolved and sorbed chemical species. Both the water column and benthic sediments are included in the model. Benthic exchange includes deposition and scour, as well as pore water diffusion. Sorption is modelled by equilibrium partition coefficients.

3.4.13 GEOTOX

GEOTOX is a comprehensive multimedia compartmental fate and exposure model that calculates chemical partitioning, degradation reactions and non-diffusive inter-phase transport. GEOTOX models air, aerosols, biomass, upper and lower soil, ground water, surface water and sediments in an area the size of a US region. These media are made up of
sub-phases of gas, liquid and solid. Chemical partitioning between compartments, interphase transport, reactive and advective loss rates are described by first-order rate constants. The model can be applied to defined regions to constant or time-varying chemical sources.

3.4.14 SMCM

The Spatial Multimedia Compartment Model (SMCM) describes the fate of chemicals in a conventional air-water-soil-sediment system under steady-state or unsteady-state conditions. It has the unusual feature that it allows for concentration variation with depth in the soil and sediment i.e. these compartments are not treated as well-mixed ‘boxes’. Whilst the approach is relatively complex, the results are probably more relevant to the ‘natural environment’. The model is ‘user friendly’ with the capability of presenting data in tabular or graphical form.

3.4.15 ENPART

ENPART (Environmental Partitioning Model) is a first-level screening tool for new and existing organic chemicals. It is a fugacity-based approach that estimates steady-state equilibrium or dynamic partitioning among environmental compartments. It identifies dominant pathways, data gaps and estimates the chemical's persistence and bioconcentration potential.

3.4.16 TOXSCREEN

TOXSCREEN is a time-dependent, multimedia model designed to assess the potential for environmental transport and accumulation of chemicals released to air, surface water or soil. The approach is modular and incorporates intermedia transfer processes.

3.4.17 MINTEQA1

MINTEQA1 is an equilibrium metal speciation model applicable to metallic contaminants in surface and groundwaters. It calculates the equilibrium aqueous speciation, adsorption, gas-phase partitioning, solid-phase saturation states and precipitation-dissolution of 11 metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Ag, Tl and Zn).

3.4.18 AQUATOX

AQUATOX is a risk model that represents the combined environmental fate and effects of conventional pollutants. It can be used to model pollutants such as nutrients, sediment and toxic chemicals in aquatic ecosystems.

AQUATOX has been implemented for streams, ponds, lakes and reservoirs and models the partitioning amongst organisms, detritus, inorganic sediments and water. It considers several trophic levels, including algae, aquatic vegetation, invertebrates and fish.

The fate portion of the programme is particularly applicable to organic toxicants where volatilisation, hydrolysis, photolysis, ionisation and microbial biodegradation are all considered.
The current version runs in Microsoft Windows and provides flexibility by allowing additional compartments to be added to the model.

3.5 Overview of Models

The assessment process demonstrated that none of the models identified met all of the required criteria listed in Section 3.3. Whilst some of the models would be suitable for modelling the fate of antifouling biocides, the information required and their complexity make them unsuitable for routine use. For many of the models, it is not known whether the source code is available and if it were, there may be copyright issues that prevent it’s free use by a third party. This is an important issue because there is a requirement for the antifoulants model to be freely available to any user.

It was therefore decided to develop a new model that draws upon processes and features that were identified to be important and useful during the survey of models.

During the course of this project, a model was developed by Delft Hydraulics for CEPE (European Council of Paints, Printing Inks and Artists Colours Industry) to predict the environmental concentrations of marine antifoulants (CEPE 1999). This model was called MAM-PEC (Marine Antifoulant Model to Predict Environmental Concentrations). This model uses five defined marine environments (although others can be added) and models the environmental fate of antifouling biocides. The model operates using a graphical interface within the Windows operating system and has been validated using existing monitoring data for antifoulants.
Table 3.1 Assessment of available environmental models

<table>
<thead>
<tr>
<th>Model</th>
<th>Covers all classes</th>
<th>Factors/processes modelled</th>
<th>Simple to use</th>
<th>Input data available</th>
<th>Appropriate modelling approach</th>
<th>Source code availability</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fugacity Level 1</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fugacity Level 2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fugacity Level 3</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fugacity Level 4</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>QWASI</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EXAMS</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>WASP5/DYNHYD5</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SMPTOX</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CHEMSEE</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>CemoS</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>E4CHEM</td>
<td>+/-</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>CE-QUAL-W2</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>ICM/TOXI</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>RECOVERY</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>TOXFATE</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>MICHRIIV</td>
<td>+/-</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>GEOTOX</td>
<td>+/-</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+/-</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>SMCM</td>
<td>+/-</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>ENPART</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>MINTEQA1</td>
<td>-</td>
<td>+</td>
<td>*</td>
<td>+/-</td>
<td>+</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>AQUATOX</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+/-</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>MAM-PEC</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>-/+</td>
<td></td>
</tr>
</tbody>
</table>

+ probably satisfactory +/- possibly satisfactory - unsatisfactory ? not known * for metals
4. FIELD SURVEYS

4.1 Introduction

As part of the model validation study (Chapter 6), field samples were collected from two of the modelled estuaries with a high degree of boating activity (Orwell; Figure 4-1 and Hamble; Figure 4-2).

Samples of water and sediment were taken from various points in the estuary and connected marinas. The samples collected were analysed for diuron, Irgarol 1051, copper and zinc.

4.2 Sampling

In order to obtain extreme values for the purpose of model validation, sampling was carried out when boating activity was at its maximum (August 1998) and minimum (February 1999).

Samples were collected from sites located in the estuary, as well as from within marinas. These sites were selected to best represent the segments defined in the model, this required each estuary to be divided into upper (S1), middle (S2) and lower (S3) sections each of which had an associated marina.

4.2.1 Orwell

Sampling points on the Orwell estuary are shown in Figure 4-1. Three marinas were sampled in the Orwell estuary; a locked marina (Shotley Point), one built within a natural inlet (Fox's) and one situated within the estuary using pontoons (Woolverstone). For the purposes of the model, each marina was located in one of the three defined sectors. Three samples were collected from different parts of each marina on the two sampling occasions. The areas sampled included slipways where antifoulant paint may have been power-washed off boats and into the marina, as well as more remote parts of the marina. Three estuarine samples were collected from each of the three sectors extending from Felixstowe docks at the mouth of the estuary, to Ipswich docks not far from the freshwater interface (a total distance of approximately 15 km). For the summer survey, samples were taken at low and high water to identify potential diurnal variations in dissolved concentrations.
<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Code (Sn)</th>
<th>Associated Marina</th>
<th>Marina Code (Mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper segment</td>
<td>S1</td>
<td>Fox’s</td>
<td>M1</td>
</tr>
<tr>
<td>Middle segment</td>
<td>S2</td>
<td>Woolverstone</td>
<td>M2</td>
</tr>
<tr>
<td>Lower segment</td>
<td>S3</td>
<td>Shotley Point</td>
<td>M3</td>
</tr>
</tbody>
</table>

Figure 4-1 Map of sampling points on Orwell Estuary
<table>
<thead>
<tr>
<th>Segment</th>
<th>Segment Code</th>
<th>Associated Marina</th>
<th>Marina Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper segment</td>
<td>S1</td>
<td>Swanwick</td>
<td>M1</td>
</tr>
<tr>
<td>Middle segment</td>
<td>S2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Lower segment</td>
<td>S3</td>
<td>Hamble Point</td>
<td>M3</td>
</tr>
</tbody>
</table>

Figure 4-2 Map of sampling sites on Hamble Estuary
4.2.2 Hamble

Sampling points on the Hamble estuary are shown in Figure 4-2. Boat density within the Hamble estuary (maximum 3000 boats), was so high that there was little difference between the marinas sited on pontoons within the estuary (e.g. Mercury, Hamble Point, etc) and the open water. Three samples were taken from different pontoons within Hamble Point Marina at the mouth of the estuary and Mercury Marina near the freshwater interface at Bursledon. Mid-estuarine samples were collected at 9 sites, roughly equi-distant from Hamble Buoy (within Southampton Water) up to Bursledon Bridge near the freshwater interface, (approximately 6 km upstream). Given the relatively small riverine input to the estuary, samples were only collected during one state of the tide (around high water).

4.2.3 Sampling procedure

Water samples for analysis for Irgarol 1051 and diuron were collected using 1 litre Pyrex glass bottles with PTFE lined screw caps (Duran Ltd). Sediment samples (250 g) were obtained using a sediment grab and placed in 250 ml glass bottles. All glassware was rinsed with methanol and deionised water prior to use. Samples were stored at 4°C prior to analysis. Water samples (approximately 250 ml) for trace metal determination were filtered onsite through acid washed 0.45 μm Gelman PVDF disposable filters (BDH-Merck) into acid washed LDPE bottles (Nalgene). Samples were preserved with high purity concentrated nitric acid (AristaR, BDH Merck), at a concentration of 2 ml of acid per litre of sample.

4.3 Analysis

4.3.1 Water

Organics

Water samples for Irgarol 1051 and diuron determination were filtered within 24 hours of collection, to 0.45 μm under vacuum, prior to extraction. Irgarol 1051 and diuron were extracted from the filtered water samples using an Envirolut Herbicide solid phase extraction column (6 ml containing 500 mg sorbent; Varian, CA). The columns were eluted with 5 x 1 ml of HPLC grade methanol (Rathburn) and the eluates were combined and evaporated to 1 ml in a VisiPrep vial using a stream of high purity nitrogen.

Irgarol 1051 and diuron were determined in extracts of water using a Varian 9010 liquid chromatograph attached to a Spectroflow 757 UV detector (Kratos Analytical). Samples (20 μl) were chromatographed on a 25 cm ODS column using an eluent of 40%:60% Methanol (containing 10 mmol cetyl trimethylammonium bromide modifier); distilled deionised water mix at a flow rate of 1 ml/min. Absorbance was measured at 247 nm. Quantification was by peak area and concentrations were calculated using calibration curves obtained for standards of known concentration (limit of detection typically 10 ng/l for Irgarol 1051, 4 ng/l for Diuron).
Metals

Copper was determined by complexation-solvent extraction followed by graphite furnace atomic absorption spectrometry (AAS) (Apte and Gunn 1987) using a Perkin Elmer PE4000 instrument (limit of detection 0.5 µg/l, typical relative standard deviation <5%).

Zinc was determined either directly by flame AAS (limit of detection 5 µg/l) or by complexation-solvent extraction using ammonium pyrrolidine dithiocarbamate (APDC) and methyl iso-butyl ketone (MIBK) (limit of detection 0.5 µg/l, typical relative standard deviation <5%; Comber and Gardner 1999).

4.3.2 Sediment analysis

Organics

For Irgarol 1051 and diuron, dried sediment samples were extracted in accordance with USEPA Method 3545 (pressurised fluid extraction). The sample was ground to 150 - 75 µm and extracted with 15 ml of a mixture of dichloromethane (DCM) and acetone (1:1 v/v) in a Dionex ASE 200 Accelerated Solvent Extractor. The final extracts were concentrated in a Turbo-Vap apparatus to approximately 100 µl and transferred into vials for analysis.

Concentrations of Irgarol 1051 in sediment extracts were then determined using GC-MS. The GC-MS system consisted of a Hewlett-Packard 5890 gas chromatograph equipped with a cool on-column injector (2 µl injection volume). This was directly coupled to a VG Trio-1 mass spectrometer operated in the electron impact mode and linked to a VG MassLab data system. A 60 m x 0.32 mm DB-5MS column with a film thickness of 0.25 µm was used under the following conditions: isothermal at 40°C for two minutes, heating to 200°C at 20°C per minute and then at 4°C per minute to a final temperature of 300 °C. The mass spectrometer was operated in the selective ion monitoring (SIM) mode using positive ion electron impact ionisation (+EI). A solution of Irgarol 1051 in methanol and DCM was analysed in order to confirm its identity, retention time and mass-spectrometric characteristics (limit of detection ca 20 µg/kg dry weight).

For the determination of diuron, an aliquot of the extract (500 µl) was placed into a Gilson autosampler vial and blown to dryness under a stream of nitrogen. The analyte was then redissolved in 100 µl of the mobile phase (63% methanol:37% 0.1M ammonium acetate) containing the internal standard benzanilide. The contents of the vial were mixed by ultrasonication and the samples analysed using LC-MS. A Hichrom Spherisorb S5ODS1 column (25cm) was used on a Hewlett Packard 1090 liquid chromatograph (1 ml/min flow rate), which was linked to a Trio-3 Mass Spectrometer utilising plasmaspray ionisation and monitoring in SIM (masses 198 - benzanilide; 213 - carbanilide the extracted internal standard and 233 - diuron) (limit of detection typically 20 µg/kg dry weight).

Metals

Copper and zinc in sediment were determined by digesting approximately 2g of wet sediment in 20ml boiling aqua-regia for 4 hours followed by centrifugation. The supernatant was poured into LDPE bottles (Nalgene Corp) and made up to 150ml
with deionised water. Samples were analysed using either Flame Atomic Absorption Spectrophotometry (FAAS) or Inductively Coupled Plasma Mass Spectrometry (ICPMS). Concentrations were calculated on a dry weight basis.

4.4 Results

As a check on the quality of data obtained for dissolved concentrations of the booster biocides, a brief comparability experiment was performed on Hamble samples collected during the summer survey. Four samples were collected in duplicate from four sites within the estuary. One set was determined at WRc and the other by CEFAS for diuron and Irgarol 1051. Trace organic analyses performed on substances present at the part per trillion (ng/l) level can show quite large variability particularly when different methods are used and the analyses are carried out in different laboratories. Errors as high as +/- 50% are not unusual for a single result. The results presented in Table 4.1 therefore show reasonable comparability between laboratories which are using different analytical techniques (WRc - HPLC-UV analysis; CEFAS/PML - GC/LC-MS).

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>WRc Values (ng/l)</th>
<th>CEFAS/PML (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diuron</td>
<td>Irgarol 1051</td>
</tr>
<tr>
<td>H3</td>
<td>151</td>
<td>16</td>
</tr>
<tr>
<td>H5a</td>
<td>277</td>
<td>109</td>
</tr>
<tr>
<td>H9</td>
<td>281</td>
<td>36</td>
</tr>
<tr>
<td>H11a</td>
<td>387</td>
<td>48</td>
</tr>
</tbody>
</table>

A summary of the field data is provided in Figure 4-3 to Figure 4-6, with a full set of analytical data presented in Appendix B. The data presented in the bar graphs is based on mean concentrations. The figures quoted below are the maximum and minimum values to show the spread of concentrations measured in the samples.

4.4.1 Dissolved Concentrations

Estuaries

Estuarine concentrations of the dissolved organic booster biocides (Irgarol 1051 and diuron) were broadly in agreement with previously reported data (Gough et al. 1994; Lord et al. 1997; Thomas et al. 1999). Winter concentrations were found to be significantly lower than summer values for both the Hamble and Orwell.

The variation in summer and winter values for organic biocides in the estuaries is probably due to decreased boat density in the winter (reducing input rates) and higher river flows (diluting and transporting the biocide).
Dissolved estuarine levels of the trace metals (zinc and copper) showed a different pattern to the organic biocides since there are other significant inputs to the estuaries besides that from antifoulant paints.

For the Orwell estuary, dissolved concentrations of copper range from around 1 µg/l in the summer to 2 µg/l in the winter and zinc from 1-3 µg/l in the summer to 4-10 µg/l in the winter.

Higher levels in the winter result from increased volume of river water being present in the estuary, carrying with it a greater load of trace metals (including copper and aluminium) from runoff, sewage and industrial discharges upstream in Ipswich (Bird et al. 1996).

For the model validation exercise, the model was set up to calculate the likely input to water from copper used in antifoulant paints and zinc used in sacrificial anodes. The latter was used since the probable input of zinc from its use in the antifoulant zinc pyrithione would be orders of magnitude lower than the amounts input from anodes.

For the Hamble estuary winter concentrations of all four determinands were significantly lower, caused mainly by a reduction in boat density. Freshwater inputs are unlikely to significantly influence dissolved levels due to the small volume of uncontaminated riverine inputs.

Marinas

In the Orwell, Irgarol 1051, diuron and trace metal concentrations were of a similar magnitude for both summer and winter samples. Variations could be accounted for through a decrease in boat numbers where levels were lower in winter (e.g. Cu in Fox’s), and through increased river inputs (e.g. Zn at Woolverstone and Fox’s), or reduced water exchange (e.g. Zn and Cu at Shotley), where levels were higher.

For the Hamble, similar temporal variations in biocide concentrations to those seen in the estuarine values were observed in the marinas. Variations between the estuarine and marina levels, however, are much lower than observed in the Orwell because:
1. the marinas sited in the Hamble are all located within the estuary on pontoons;
2. the boat density in the Hamble is so high, there is little difference between the marinas and the open estuary.

![Diuron](image-url)
Figure 4-3 Summary of dissolved concentrations in Orwell Estuary
Key: Summer 1998 (hatched bars)
Winter 1999 (black bars)
CEFAS (mean concentrations April-October 1998). (white bars).

Figure 4-4 Summary of dissolved concentrations in Hamble Estuary
4.4.2 Sediment Concentrations

Sediment concentrations for the summer and winter surveys were very similar in concentration for copper, zinc, Irgarol 1051 and diuron, as would be expected due to the reduced mobility of bottom sediment. Variations are most likely to occur due to the heterogeneous nature of the bottom sediment. There were, however, significant variations between estuarine and marina concentrations, as would be expected due to the differences in boat density.

Orwell

Marina concentrations of copper and zinc ranged from 50 - 1000 mg/kg and 150 - 614 mg/kg respectively compared with significantly lower levels in the estuary (Cu 5 - 87 mg/kg; Zn 27 - 230 mg/kg). Diuron levels were only detectable in the marina sediment of Fox’s (<12 - 16 µg/kg) and Shotley marinas (24 - 1000 µg/kg), and Irgarol 1051 was only present above the limit of detection at Shotley marina (24 - 2980 µg/kg). The low concentrations in the sediment reflected the lack of affinity (and hence low log Koc) that Irgarol 1051 and diuron have for particulate material. The highest concentrations measured at Shotley for all of the determinands were at the bottom of the slipway, near to where the majority of antifoulant paint removal and application occurs. The sediment is therefore likely to contain chips of paint enriched in these substances.

Hamble

Differences between the estuary and the marinas were less variable due to the large number of vessels moored in the estuary and the fact that the marinas are sited on pontoons within the estuary itself (e.g. Cu in marina ca. 100 mg/kg, in estuary 50 mg/kg; Zn in marina ca. 200 mg/kg, in estuary 100 mg/kg). Similar to the Orwell, Irgarol 1051 and diuron concentrations were very low and only above the limit of detection at a few sporadic sites (Irgarol 1051 <10 - 31 µg/kg; diuron <12 - 26 µg/kg). The fact that Irgarol 1051 was detected in more samples than diuron even though dissolved concentrations of diuron were significantly higher, may reflect the more persistent nature of Irgarol 1051.
Figure 4-5 Sediment concentrations in Orwell

Key: Summer 1998 (hatched bars)
Winter 1999 (black bars).
Blanks are below limits of detection (all less than 20 µg/kg).
Key: Summer 1998 (hatched bars) Winter 1999 (black bars). Blanks are below limits of detection (all <20 ug/kg).

Figure 4-6 Sediment concentrations in Hamble Estuary
5. PARTITIONING EXPERIMENTS

The degree to which the constituents of antifoulant paints partition between the dissolved and particulate phases is critical to understanding their eventual fate and behaviour in the aquatic environment.

For metals the partition coefficient (Kp) is defined as:

\[Kp \text{ (l/kg)} = \frac{\text{mass of substance in particulate phase (mg/kg)}}{\text{mass of substance in dissolved phase (mg/l)}} \]

For organic compounds partitioning is generally dominated by adsorption to particulate organic carbon present in the sediment. As a result the partition coefficient is normalised to the organic carbon fraction:

\[K_{oc} = \frac{Kp}{f_{oc}} \]

where:

- \(K_{oc} \) = the organic carbon : water partition coefficient
- \(Kp \) = the partition coefficient
- \(f_{oc} \) = fraction of organic carbon present in the sediment

For example, substances with low partition coefficients will predominantly exist in the dissolved phase which means that although they will be rapidly dispersed and diluted within the aquatic environment, they may be more bioavailable, and contamination is potentially spread over a wider area. On the other hand, substances with a high partition coefficient will predominate in the particulate phase. Their relative lack of mobility will potentially result in high localised concentrations which may have implications when dredging etc. The situation is made even more complex by the fact that the partitioning is largely controlled by the physico-chemical properties of the particulate material. In general the partitioning of organic compounds and trace metals is dominated by adsorption to particulate organic carbon and the <63\(\mu \)m fraction present in sediment, respectively.

Another important controlling parameter in the partitioning of contaminants between the dissolved and particulate phases is the kinetics of adsorption. The rate at which adsorption/desorption occurs is of particular importance under non-equilibrium conditions encountered in tidal estuaries. Here, major physical processes are occurring over a 12 hour cycle that can have a significant influence on the partitioning of substances. For example, the kinetics of antifoulants released from vessels will be influenced by a number of estuarine physico-chemical processes such as:

- the turbidity maxima in an estuary,
- the arrival of ‘fresh’ seawater and particulates with each tide,
- exposure of sediment at low tide,
- changes in river water volumes within an estuary.
In order to gain a better understanding of the fate and behaviour of the antifoulants in the marina and estuarine environment, as well as provide default values for the model, a series of partitioning experiments were performed using 6 sediments of varying physico-chemical characteristics. The initial characteristics of the sediments used in the experiments are shown in Table 5.1.

Table 5.1 Characteristics of sediments used for the partitioning experiments*

<table>
<thead>
<tr>
<th>Sediment</th>
<th>Description</th>
<th>TOC (%)</th>
<th><63 µm (%)</th>
<th>Cu (µg/g)</th>
<th>Zn (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arun Estuary</td>
<td>Small muddy relatively clean estuary (W. Sussex)</td>
<td>1.25</td>
<td>69.8</td>
<td>23.5</td>
<td>77.7</td>
</tr>
<tr>
<td>Bracklesham Bay</td>
<td>Clean sandy beach (W. Sussex)</td>
<td>0.07</td>
<td>3.1</td>
<td>0.54</td>
<td>11.7</td>
</tr>
<tr>
<td>Bosham Harbour</td>
<td>Organic rich mud within Chichester Harbour (W. Sussex)</td>
<td>3.57</td>
<td>91.5</td>
<td>35.6</td>
<td>133.0</td>
</tr>
<tr>
<td>Chichester Harbour</td>
<td>Muddy sediment from main part of harbour - a few boats moored (W. Sussex)</td>
<td>1.07</td>
<td>73.1</td>
<td>59.2</td>
<td>80</td>
</tr>
<tr>
<td>Dell Quay</td>
<td>Sandy/shale/mud sediment from creek within Chichester Harbour (W. Sussex)</td>
<td>0.70</td>
<td>35.2</td>
<td>20.0</td>
<td>34.7</td>
</tr>
<tr>
<td>Pagham Harbour</td>
<td>Mud/sand from ‘clean’ muddy inlet/harbour (W. Sussex)</td>
<td>0.99</td>
<td>69.4</td>
<td>9.8</td>
<td>50.0</td>
</tr>
</tbody>
</table>

*Irgarol 1051 and diuron concentrations all less than 10 ng/g.

5.1 Irgarol 1051 and Diuron Partitioning Experiments

5.1.1 Method

Batch partitioning experiments were carried out in duplicate in methanol and deionised water rinsed 1l Pyrex bottles (Duran Ltd). Sufficient wet weight of sediment was added to each litre of filtered seawater to provide suspended solid concentrations equivalent to 1, 20 and 200 g sediment dry weight / litre. To each vessel a fixed concentration of Irgarol 1051 and diuron was added (250 ng/l for 20 g/l suspended solids and 500 ng/l for 1 g/l and 200 g/l solids) by dilution of a stock standard. These concentrations offered a good compromise between measuring the partitioning at an environmentally realistic concentration, whilst allowing sufficiently accurate and precise analytical determinations.

Samples were equilibrated for 24 hours. This has been shown to be sufficient time to achieve equilibration (Comber *et al.* 1992), without allowing the samples with high levels of solids to become anoxic and therefore solubilise iron (this will precipitate upon filtering causing interferences with the extraction and analysis procedures). For the duration of equilibration the samples were shaken constantly at a temperature of 15 °C (+/- 1°C) in the dark.

Filtration and analysis was carried as described in the Section 4.
The ready availability of a rapid method for the determination of copper and zinc meant that the kinetics of adsorption of the trace metals to the particulates from the dissolved phase could easily be investigated (see next section). The analysis of Irgarol 1051 and diuron at environmentally realistic concentrations (ppb), however, involves filtering a litre of sample followed by extraction, elution, blow-down and analysis which is lengthy (and costly) and therefore not suitable for studying the kinetics of reaction. As has already been described however, the kinetics of adsorption is a very important parameter when considering the environmental fate and behaviour of a substance under non-equilibrium environments, such as those encountered in tidal areas. As a consequence a brief kinetic experiment was undertaken using 14C-labelled linuron that was available at our laboratory.

Diuron (see structure (a) below) is very similar chemically to linuron (see structure (b) below) with one of the methyl groups on the terminal nitrogen replaced with a methoxy group.

```
Cl Cl
\text{N} \text{O}
\text{Cl Cl N O}
```

(a) DIURON (b) LINURON

Literature values for Koc of linuron (experimental data: mean 2.78, SD 0.29, n 137. SRC estimate: 2.54) at equilibrium are close to those of diuron (experimental: mean 2.47, SD 0.3, n 156. SRC estimate: 2.13). This suggests that its partitioning behaviour would also be very similar. Radiochemical measurement offers the advantages of being a very rapid, simple and sensitive procedure with the potential for kinetic experiments. A 14C-linuron standard (26.8 mCi/mg, 1.5 mBq/ml, in methanol) was spiked at a level of 1000 Bq/ml into 500 ml clean glass bottles (Duran Ltd) containing duplicate sets of the 6 sediments at 20g/l solids (dry weight). The bottles were shaken in the dark for 12 days. Samples were withdrawn at appropriate time intervals (5 and 30 minutes, 1.5, 4, 7 hours and 1, 2, 5, 9, 12 days). At each time interval approximately 8 ml of sample was poured into clean glass vials and centrifuged for 15 minutes at 4000 rpm to separate the particulates from the aqueous phase. An aliquot (0.5 ml) of the aqueous phase was then pipetted into 10 ml of scintillant (Instagel plus, Canberra Packard), counted in a Beckman liquid scintillation counter (LS6000SE) for 2 x 5 minutes and the mean count calculated. In order to check for degradation at day 1, 5, 9 and 12, an aliquot (50 µl) of the dissolved phase was taken and injected onto a HPLC column (Waters ODS1, 25 cm 4.6 mm id) and eluted using 65:35 acetonitrile:water (retention time 4.7 minutes). Detection was achieved using a Packard liquid scintillation flow detector. Peaks for the samples were compared with those obtained for a standard.

5.1.2 Results and Discussion

Figure 5-1 and Figure 5-2 illustrate the degree of adsorption of the antifoulants Irgarol 1051 and Diuron occurring at the three different suspended solids concentrations (1 g/l, 20 g/l and 200 g/l), with Figure 5-3 exhibiting the log Koc values for each sediment.
From Figure 5-1 and Figure 5-2 it can be seen that only at high suspended solids concentrations is there significant adsorption of Irgarol 1051 or diuron to the particulate phase. This behaviour is consistent with the known partitioning behaviour of these two compounds. In addition the degree of adsorption measured is proportional to the amount of organic carbon present in the sediment, as is generally observed for organic substances in sediment (Karickhoff et al. 1979). As a consequence, the calculated partition coefficients normalised to organic carbon content (log Koc) for the six sediments at the three suspended solids concentrations are similar.
Figure 5-1 Dissolved concentrations of Irgarol 1051 in sediment tests

Key:
A=Arun
B=Bracklesham
Bo=Bosham
C=Chichester
DQ=Dell Quay
P=Pagham
Figure 5-2 Dissolved concentrations of Diuron in sediment tests
Figure 5-3 Log Koc calculated for diuron and Irgarol 1051 for the six experimental sediments at the three different suspended solids levels
There is substantial literature data currently available for diuron Koc, most of which is for soils. Much less data has been published regarding Irgarol 1051 Koc. Results obtained from this work show reasonable agreement with those that are available at higher suspended solids concentrations.

Measured log Koc's for diuron and Irgarol 1051 at 1 g/l suspended solids levels were generally higher than literature values (Table 5.2).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Log Koc</th>
<th>No. of samples (s.d.)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuron</td>
<td>2.6</td>
<td>-</td>
<td>Lewis and Gardiner (1996)</td>
</tr>
<tr>
<td>Diuron</td>
<td>2.82</td>
<td>8 (0.17)</td>
<td>J. of Env. Qual, (1980), 9, 1, 101-106</td>
</tr>
<tr>
<td>Diuron</td>
<td>2.47</td>
<td>156 (0.3)</td>
<td>Gerstl (1990)</td>
</tr>
<tr>
<td>Irgarol 1051</td>
<td>2.38</td>
<td>predicted</td>
<td>Rogers et al. (1996)</td>
</tr>
<tr>
<td>Irgarol 1051</td>
<td>>3.56</td>
<td></td>
<td>Ciba (1998)</td>
</tr>
</tbody>
</table>

The kinetic experiment performed with 14C-labelled linuron shows how the adsorption of organic compounds can vary dramatically between sediments (Figure 5-4). For all sediments equilibrium is not fully achieved until after approximately 100 hours, which is longer than has often been reported elsewhere. Normalising the partitioning to the fraction of organic carbon present in the sediment, however (Table 5.3), provides log Koc values that are very similar. This reflects how the particulate organic carbon controls the adsorption of organic compounds. The values obtained are only a little higher than previously reported values (mean 2.78, SD 0.29, n 137 - experimental; Gerstl 1990) for Koc of linuron in soils.

<table>
<thead>
<tr>
<th>Sediment</th>
<th>foc</th>
<th>log Koc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arun</td>
<td>0.0125</td>
<td>3.03</td>
</tr>
<tr>
<td>Bracklesham Bay</td>
<td>0.0007</td>
<td>3.69</td>
</tr>
<tr>
<td>Bosham</td>
<td>0.0357</td>
<td>3.07</td>
</tr>
<tr>
<td>Chichester</td>
<td>0.0107</td>
<td>3.13</td>
</tr>
<tr>
<td>Dell Quay</td>
<td>0.007</td>
<td>2.70</td>
</tr>
<tr>
<td>Pagham</td>
<td>0.0099</td>
<td>3.20</td>
</tr>
</tbody>
</table>
Figure 5-4 Dissolved concentration of 14C-labelled linuron with time for six different sediments
The results presented in the above tables show that at low suspended solids concentrations, very little of the added diuron and Irgarol 1051 adsorbs to the particulate phase; as would be predicted from the relatively low log Koc and low organic carbon content of the sediment. At 1 g/l suspended solids, an average of only 4.4% (22 ng/l) of the added booster biocide was adsorbed, which made discrimination between the initial and final dissolved concentrations very difficult during the analytical stage. This was likely to be the cause of the slightly higher values for Koc obtained compared with the literature values. As the suspended solids content of the water increases, so a relatively higher proportion of the biocides adsorb to the particulate phase; log Koc values obtained for the 20 and 200 g/l suspended solids levels reflected those obtained by other workers.

This partitioning data demonstrates that in the aquatic environment both diuron and Irgarol 1051 will be predominantly detected in the dissolved phase unless there are very high suspended solids concentrations. This has also been shown to be the case with the field monitoring data where the majority of sediment samples contained concentrations of less than 10 ng/kg Irgarol 1051 and diuron, compared with dissolved concentrations which were in the range 10 to 100 ng/l for Irgarol 1051 and 10 to 1000 ng/l for diuron. The kinetic experiment conducted with radio-labelled linuron, which would be expected to behave in an almost identical manner to diuron, showed that complete equilibrium between the dissolved and particulate phases was not achieved until after approximately 4 days for all of the experimental sediments.

In summary, the experimental and field data suggest that in a marina environment, where high boat density ensures high levels of antifoulants in the water and suspended solid concentrations are generally low (<20 mg/l), the booster biocides examined here will be transported out of the marinas in the dissolved phase rather than adsorb to, and settle out on, the particulates. Accumulation in the sediment, producing a ‘pool’ of contaminants, is therefore unlikely to happen although it does suggest that the biocides will be transported further afield and will potentially be more bioavailable. Environmental levels measured during the field surveys as part of the work and previous studies (Thomas et al. 1999), however, show that even in locked marinas diuron concentrations are almost always less than the Environmental Quality Standard (guideline EQS) of 2 µg/l. There is currently no equivalent EQS for Irgarol 1051 but measured concentrations were even lower than for diuron.

5.2 Copper and zinc partitioning experiments

5.2.1 Methods

Experiments were performed to investigate the partitioning behaviour of zinc and copper between water and sediment for 6 estuarine and coastal surface sediments collected from relatively uncontaminated sites along the south coast of England. These tests were initially performed at a concentration of 1 g dry sediment/l of water and included a series of experiments to determine the kinetics of partitioning as well as the ultimate equilibrium partition coefficient.

Further investigations were performed at sediment concentrations of 0.1 g/l (to mimic a “typical” marina/harbour suspended solid concentration) and 200 g/l (1:5 sediment:water). The highest concentration represents conditions experienced at the water column/sediment interface of harbours and estuaries and also corresponds to the sediment concentration used in the OECD soil/sediment adsorption/desorption test. It was assumed that the kinetics of sorption for the 0.1 and 200 g/l experiments would be similar to those observed for the
original 1 g/l tests, consequently; equilibrium partition coefficients were measured after 18
days only.

All experiments were carried out in triplicate in 250 ml acid-washed Nalgene low density
polyethylene bottles, using a total sample volume of 200ml. In order to achieve a suspended
sediment concentration of 0.1 and 200 g/l, an equivalent of 20 mg and 40 g dry weight of
sediment respectively was used. Uncontaminated sea water collected from the south coast
was used for all experiments; 100 µg/l of copper and zinc (20 µl of 1000 mg/l Spectrosol
standards) was spiked into each bottle. For consistency the spiked concentration was kept
constant at 100 µg/l for all experiments. This meant that aqueous concentrations at
equilibrium were not atypical of levels measured in estuaries (typically 1 - 8 µg/l for Cu and 1 -
15 µg/l for Zn), marinas or harbours (e.g. greater than 20 µg-Zn/l in locked marinas; Bird et al.
1996). Copper concentrations in marinas and harbours are unknown but are likely to be
significantly greater than 10 µg/l.

Samples were kept in the dark and continuously agitated for the duration of the experiment.
For each test a control (sea water spiked with 100 µg/l copper and zinc) was included to test
for adsorption to vessel walls. In addition deionised water and seawater blanks were included
to identify potential contamination during sample handling and filtration. After 18 days
equilibration, samples were filtered and analysed as described previously.

Additional characterisation of the sediment was undertaken by measuring the total organic
carbon (TOC) and the particle size distribution. TOC data is essential for the determination of
the organic carbon:water partition coefficient (Koc) used in the model for organic compounds
and has a strong influence on the partitioning of copper in particular. Particle size is also an
important parameter controlling the behaviour of metals and organics in the aquatic
environment. In general, metals and organics are concentrated in the fine material (<63 µm),
due to the increased surface area associated with this fraction (Taylor 1986).

5.2.2 Results and Discussion

Results from these experiments are tabulated in Table 5.4 and presented in the form of
barcharts in Figure 5-5 and Figure 5-6.

<table>
<thead>
<tr>
<th>Table 5.4 Partition coefficients for copper and zinc in estuarine sediments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu Kp (l/kg) x 10^3</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Susp. Solid conc (g/l)</td>
</tr>
<tr>
<td>Arun (A)</td>
</tr>
<tr>
<td>Bracklesham Bay (Br)</td>
</tr>
<tr>
<td>Bosham (Bo)</td>
</tr>
<tr>
<td>Chichester (C)</td>
</tr>
<tr>
<td>Dell Quay (DQ)</td>
</tr>
<tr>
<td>Pagham (P)</td>
</tr>
</tbody>
</table>
The above data show similar trends in equilibrium Kp for both copper and zinc. The sandy Bracklesham Bay sediment showed little affinity for the metals at all suspended solid concentrations, and had a correspondingly low partition coefficient. The low percentage of fine particulate matter (and correspondingly high proportion of inert sand) in the sample was the reason for the low adsorption capacity (Figure 5-7). For the other samples, there was a general trend of copper Kps being 5 to 10 times greater; this behaviour is typical in other studies of UK sediments, and has been attributed to copper’s greater affinity for particulate organic carbon (Comber et al 1995). The fact that the highest Kps for copper (which are also 10 times greater than zinc Kps) are associated with sediments containing the highest organic carbon content (Figure 5-8), offers further support to this theory.
There was little difference between the equilibrium Kps for suspended solids concentrations of 0.1 and 1 g/l, zinc values were almost identical, with copper values being marginally higher for the greater suspended sediment concentration. Previous studies have indicated that Kp is likely to decrease with increasing suspended solids loadings; the reasons for this include particle induced desorption and higher concentrations of dissolved organic carbon stabilising greater amounts of trace metal in the aqueous phase. However, most previous studies were carried out using oxic suspended sediment collected from the water column (Balls 1989, Turner et al. 1992; Turner 1996), with the intention of deriving fluxes and budgets for trace metals passing through estuaries and into coastal waters. Attention was therefore focused on
the interaction between metals in the dissolved phase (typically derived from industrial inputs) and suspended solids within the water column.

For this work however, interactions within marinas, harbours and estuaries are the focus of attention. Within these environments resuspended bottom sediment, and its influence on the partitioning of substances in overlying water, is of much greater importance; hence the use of bottom sediments in the above experiments. The main difference between experiments using resuspended bottom sediment compared with suspended sediment collected from the water column is that bottom sediments are generally anoxic and contain greater concentrations of sulphides. Metal sulphides are insoluble and hence partitioning experiments using resuspended bottom sediments will result in the sulphides showing a very strong affinity for the trace metals, thus increasing the Kp. As the suspended sediment concentration increases, so will the sulphide levels and hence the proportion of metal being associated with the sulphide phase. This is particularly evident for the 200 g/l suspended solid experiments, where Kp for both zinc and copper increased very significantly for certain sediments (at least 1 order of magnitude for Bosham and Chichester sediment for both Zn and Cu and Dell Quay for Cu). The reason why Kp increases dramatically for some sediments and not others at 200 g/l suspended solids is not entirely clear. It is possibly due to differences in sulphide levels in sediments and/or the degree to which the sediments become anoxic during the equilibration period (the more anoxic suspended sediments become, the greater the sulphide production and hence the greater the adsorption of metals). This behaviour observed in the laboratory experiments would be expected to reflect the partitioning that occurs in a marina or harbour environment.

5.3 Laboratory experiments used in a predictive capacity

The experiments carried out as part of this work have demonstrated how important the partitioning process is in controlling the fate and behaviour of antifoulants in the aquatic environment. Experimental data showed that in a low suspended sediment environment diuron and Irgarol 1051 would be found primarily in the dissolved phase. This was confirmed by the measurements obtained from samples from the Hamble and Orwell estuaries. The experiments also demonstrated that the use of normalisation of the partition coefficient (Kp) to the fraction of organic carbon present in the sediment to provide a Koc value, effectively removed any variations in the partitioning behaviour of diuron and Irgarol 1051 for all of the sediments even though they had wide range of organic carbon and <63µm particles present. The new REMA model contains input values for fraction of organic carbon and Koc which should allow most environmental scenarios to be adequately accounted for.

Copper and zinc demonstrated a stronger affinity for the solid phase than that of the organic biocides. Their partition coefficients varied by several orders of magnitude depending on three key parameters – the particle size distribution, the fraction of organic carbon and the suspended solids concentration. There is, however, currently no widely accepted normalisation method to describe the partitioning of trace metals between the dissolved and solid phases although in general, the degree of adsorption is proportional to the percentage of fine material present in the sediment.

For the purpose of generating partitioning data for the antifoulant model, mean partitioning values were used to describe ‘typical’ sediment expected to be encountered in the estuaries of interest. However, the user may wish to use the model to predict environmental concentrations under ‘non-typical’ conditions, such as those in an organic carbon-rich environment, or in a marina where the predominant fraction of sediment was fine clay.
minerals. Provided fractions of organic carbon are known, then obtaining accurate predictions for the concentrations of organic biocides in the water and sediment should not prove problematic. For copper and zinc, however, in order to accurately predict antifoulant levels, the partition coefficients should be changed to reflect the 'non-typical' environment. Figures 5-9 to 5-14 show correlations between copper and zinc and the two physico-chemical parameters most likely to control the partitioning behaviour of trace metals, fraction of organic carbon and percentage of sediment <63µm.

![Graph](image_url)

Figure 5-9 Kp for Cu vs percentage of sediment < 63 µm for six coastal sediments
Figure 5-10 Kp for Cu vs fraction of organic carbon (foc) in six coastal sediments

Figure 5-11 Kp for Zn vs percentage of sediment < 63 µm for six coastal sediments
Figure 5-12 Kp (200 g/l SS) for Zn and Cu vs percentage of particles < 63 μm in six coastal sediments

Figure 5-13 Kp (200 g/l SS) for Zn and Cu vs fraction of organic carbon (foc) in six coastal sediments
From the above figures it can be seen that there are no significant correlations between Kp and the sediments’ physico-chemical parameters for suspended solids concentrations of 200 g/l, for either copper or zinc. This probably reflects the sulphide chemistry occurring under these conditions and already discussed above.

All of the other figures show a roughly linear directly proportional relationship between Kp for Cu and Zn and either foc or percentage of particles < 63 µm. Indeed several of the plots show an excellent correlation (R² >0.9), with the others having correlation coefficients (R²) of 0.55 or more (Table 5.5). This shows that the data derived from this study is in agreement with earlier work showing the affinity of organic carbon for the fine fraction of sediment and that the Kp for the metals increases with increasing organic carbon content and/or increasing amount of fine (<63 µm) material present in the sediment. Therefore it may be possible to use these relationships to predict the likely Kp for copper and zinc under extreme conditions of suspended sediment concentration possibly found in the marine environment.

Table 5.5 Correlation coefficients between sediment physico-chemical parameters and Kp for copper and zinc

<table>
<thead>
<tr>
<th>Trace metal</th>
<th>Suspended Solids</th>
<th>0.1 g/l</th>
<th>1 g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% <63µm</td>
<td></td>
<td>0.55</td>
<td>0.93</td>
</tr>
<tr>
<td>% TOC</td>
<td></td>
<td>0.90</td>
<td>0.75</td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% <63µm</td>
<td></td>
<td>0.68</td>
<td>0.80</td>
</tr>
<tr>
<td>% TOC</td>
<td></td>
<td>0.90</td>
<td>0.69</td>
</tr>
</tbody>
</table>
6. MODEL DEVELOPMENT

None of the available computer models described in Section 3 were found to be fully suitable for modelling the fate of antifouling biocides for PRS.

A new model REMA (Regulatory Environmental Modelling of Antifoulants) was designed, written and validated to aid the PRS in its decision making processes.

A number of criteria for the development of a new model were identified. It was decided that, the model should include a number of environmental compartments and processes and require a number of inputs (Table 6.1).

<table>
<thead>
<tr>
<th>Model components</th>
<th>Processes / inputs included</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>size of marina/harbour/estuary, number of boats, size and types of boat</td>
</tr>
<tr>
<td>Antifoulant</td>
<td>leaching rates, partition coefficients (air/water, water/suspended sediment, water/bed sediment, water/biota), kinetic information, quantity used</td>
</tr>
<tr>
<td>Model compartments</td>
<td>air, water, suspended sediment, biota, bed sediments</td>
</tr>
<tr>
<td>Processes</td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td>aerobic biodegradation, anaerobic biodegradation, bioaccumulation</td>
</tr>
<tr>
<td>Chemical</td>
<td>partitioning, aqueous hydrolysis, photolysis</td>
</tr>
<tr>
<td>Hydrological</td>
<td>water and sediment output rate, water and sediment input rates</td>
</tr>
</tbody>
</table>

A three-segment model was specified, with each segment containing a marina as shown in Figure 6-1. The model is based on the quantitative water-air-sediment interaction (QWASI) model developed by Mackay et al., (1983). These types of QWASI based models have been successfully applied to various aquatic systems (e.g. Mackay et al. 1986) including rivers.
Figure 6-1 Schematic diagram of the proposed model

Figure 6-2 Structure of the quantitative water-air-sediment interface model which makes up each segment
Three estuary segments, each made up of water, sediment and biocide which flows between them.

Inputs to the estuary segments from rivers containing water, sediment and biocide.

Sea water carrying sediment and biocide, enters and leaves the bottom estuary segment with the tides.

Biocide enters the estuary segments from the marinas.

Biocide enters the estuary segments from boats moored in the estuary.

Biocide is lost due to burial.

Biocide is lost due to evaporation.

Biocide is lost in flows to the open sea.

Figure 6-3 Interactions between estuary segments
The basic unit of the QWASI model is illustrated in Figure 6-2 and consists of a well mixed sediment compartment underlying a well mixed water column that is exposed to the atmosphere. The air compartment consists of an air/aerosol mixture, the water compartment contains water and suspended solids and the sediment compartment is comprised of solids and pore water. The overall model therefore consists of 3 such sediment-water compartments each with an associated marina, and the interactions between these segments are illustrated by Figure 6-3. The model can however be run using fewer segments. The model has been written in BASIC but after extensive testing and refinement it was programmed in Visual Basic to provide a user friendly system that can be used in the risk assessment process. The parameters and qualifiers used in the model are shown in Table 6.2. In order to use the model a number of inputs are required relating to the antifoulant biocide, the number and types of boat in each segment, the properties of each marina and segment and the transport of water and solids between segments. The inputs required for the biocide and the use made of them in the model are shown in Table 6.3.

The BASIC programme, which forms the ‘engine’ of the new model software, was tested using a hypothetical situation and shown to give a correct mass balance.

Table 6.2 Symbols used for Model Parameters and Qualifiers

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A area (m²)</td>
<td>A air</td>
</tr>
<tr>
<td>B transport/transformation per unit area (mol/h.Pa.m²)</td>
<td>B burial and biota</td>
</tr>
<tr>
<td>C concentration (mol/m³)</td>
<td>D sediment burial</td>
</tr>
<tr>
<td>D transport/transformation (mol/h.Pa)</td>
<td>I water inflow</td>
</tr>
<tr>
<td>E emission (mol/h)</td>
<td>J water outflow</td>
</tr>
<tr>
<td>f fugacity (Pa)</td>
<td>L liquid phase</td>
</tr>
<tr>
<td>G flow rate (m³/h)</td>
<td>M rain</td>
</tr>
<tr>
<td>h depth (m)</td>
<td>N sediment pore water</td>
</tr>
<tr>
<td>H Henry's Law Constant (Pa.m³/mol)</td>
<td>P suspended sediment particles</td>
</tr>
<tr>
<td>I group of D or B variables</td>
<td>Q air particle</td>
</tr>
<tr>
<td>J flow rate per unit area (m³/m².h)</td>
<td>R resuspension</td>
</tr>
<tr>
<td>k rate constant (h⁻¹)</td>
<td>S sediment</td>
</tr>
<tr>
<td>k₁ overall time rate constant (h⁻¹)</td>
<td>T sediment-water transfer</td>
</tr>
<tr>
<td>k₂ overall distance rate constant (m⁻¹)</td>
<td>V volatilisation</td>
</tr>
<tr>
<td>K mass transfer coefficient</td>
<td>W water</td>
</tr>
<tr>
<td>L length (m)</td>
<td>X water particles inflow</td>
</tr>
<tr>
<td>P pressure (Pa)</td>
<td>Y water particles outflow</td>
</tr>
<tr>
<td>R gas constant (8.314 Pa.m³/mol K)</td>
<td>Z fugacity capacity (mol/m³.Pa)</td>
</tr>
</tbody>
</table>

See also Figure 6-2
6.1 Model Setup

It is apparent that compiling the model requires a large number of input variables describing discharges, physicochemical properties (including transformation half-lives) and environmental parameters. Therefore, in its initial form, the model was probably unsuitable for routine use or for use by inexperienced operators. WRc therefore set up the model for a number of UK marinas, harbours and estuaries. These cover a number of scenarios, with estuaries of varying sizes and dynamics and marinas of different types (e.g. locked, open, pontooned etc). Using this approach, the only information a user needs to input would be the properties of the antifoulant and the number of vessels in each marina.

Ideally the programme would predict the fate of an antifouling biocide in a range of different estuary types e.g.:

1. a small estuary that dries out (e.g. Hamble River)
2. a well mixed estuary (e.g. River Orwell)
3. a large, complex estuary (e.g. Southampton Water)

Input values on the properties of each model system were obtained using data from existing hydrological models and data on boat density and antifoulant usage from a survey which was performed by WRc for the Environment Agency (Boxall et al., 1998). Partitioning data used in the model is presented in Appendix D. Input values for the biocide concentrations have been obtained from a combination of survey data (Appendix C) and literature values.

Further description of the QWASI model and the outputs produced is provided in Appendix D.
<table>
<thead>
<tr>
<th>Input</th>
<th>Parameters required</th>
<th>Use for Parameter in Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of antifouling biocide</td>
<td>molecular mass</td>
<td>calculation of molar concentrations</td>
</tr>
<tr>
<td></td>
<td>melting point</td>
<td>calculation of fugacity for substances that are liquids at ambient temperature</td>
</tr>
<tr>
<td></td>
<td>solubility</td>
<td>calculation of partitioning coefficients</td>
</tr>
<tr>
<td></td>
<td>vapour pressure</td>
<td>calculation of partitioning coefficients</td>
</tr>
<tr>
<td></td>
<td>Henry's Law Constant</td>
<td>partitioning calculations</td>
</tr>
<tr>
<td></td>
<td>octanol-water partition coefficient</td>
<td>partitioning calculations</td>
</tr>
<tr>
<td></td>
<td>water reaction half life</td>
<td>degradation calculations</td>
</tr>
<tr>
<td></td>
<td>sediment reaction half life</td>
<td>degradation calculations</td>
</tr>
<tr>
<td></td>
<td>leaching rate from paint</td>
<td>input calculations</td>
</tr>
<tr>
<td></td>
<td>Discharges to marinas and segments</td>
<td>number of boats in marina</td>
</tr>
<tr>
<td></td>
<td>size distribution of boats in marina</td>
<td>antifoulant input calculations</td>
</tr>
<tr>
<td></td>
<td>type of boat in marina</td>
<td></td>
</tr>
<tr>
<td>Segment properties</td>
<td>fraction of organic carbon in suspended solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>density of particles in water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>density of surficial sediment particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>volume fraction of water particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>concentration of water column particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>volume fraction of solids in sediment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>water area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sediment area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>water volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sediment volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean water depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean active sediment depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>water inflow and outflow rate</td>
<td></td>
</tr>
</tbody>
</table>

58
<table>
<thead>
<tr>
<th>Input</th>
<th>Parameters required</th>
<th>Use for Parameter in Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marina properties</td>
<td>fraction of organic carbon in suspended solids</td>
<td>transport and fate calculations</td>
</tr>
<tr>
<td></td>
<td>fraction of organic carbon in the sediment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>density of particles in water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>density of surficial sediment particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>volume fraction of water particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>concentration of water column particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>volume fraction of solids in sediment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>water area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sediment area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>water volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sediment volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean water depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean active sediment depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>water inflow and outflow rate</td>
<td></td>
</tr>
<tr>
<td>Sediment-water exchange processes</td>
<td>sediment deposition</td>
<td>partitioning calculations</td>
</tr>
<tr>
<td></td>
<td>sediment resuspension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sediment burial</td>
<td></td>
</tr>
</tbody>
</table>
6.2 Model validation

Model validation, probably better described as ‘reconciliation’, is ostensibly a simple process that involves comparison of the predicted concentrations produced by the model with measured concentrations produced from a field sampling and laboratory analysis programme. However, there are uncertainties associated with many of the key input and environmental data required to run the model and with the measured data. Consequently, model validation tends to be an iterative process whereby the predictions made by the model (using the input and environmental data that is considered to be the most appropriate) are compared with the available measured data. If there are substantial discrepancies (typically more than 1-2 orders of magnitude) between the predicted and measured concentrations, then both the measured data and the model data are scrutinised to determine likely potential sources of these discrepancies. Where this shows there is a valid, technically justifiable modification required to the input and/or environmental data, this will be made and the model will be run again to produce estimated concentrations for comparison with the measured data. This iterative process stops when there are no further valid, technically justifiable modifications that can be made, irrespective of the final correlation between the predicted and measured data.

In the case of the REMA model, a dataset was compiled for 4 estuaries; the Orwell, Hamble, Crouch and Southampton Water. Concentrations of four selected biocides (diuron, Irgarol 1051, copper and zinc) in the river water and receiving water were mainly derived from the field monitoring exercises (see Chapter 4) carried out for the Hamble and Orwell; but also include best estimates for the Crouch and Southampton Water from available monitoring data produced by CEFAS for DETR (Thomas et al., 1999).

For the REMA model, only two main validation exercises were necessary, since the input and environmental data had been carefully considered during the early stages of the project.

6.2.1 UK Usage Data

Usage data were obtained from the Environment Agency antifoulant survey (Boxall et al., 1998). These were based on the average minimum leaching rates which were considered to be representative of the majority of the time that a vessel’s hull would be exposed to water. The higher leaching rates presented in that report are more suitable for predicting concentrations from boats entering the water immediately after painting, when the rate of release of the biocide would be at its greatest.

A survey of boat owners, boatyards, chandlers, marina operators, harbour masters and manufacturers was performed in two stages. In the first stage, a pilot study involving in-depth interviews was performed on a small number of interviewees. The aims were to:

1) identify the type and quality of information that was likely to be available on the usage of antifouling paints; and

2) obtain information to assist in the preparation of survey questionnaires.

In the second stage of the project, questionnaires were produced and used in order to obtain information on antifouling usage around the UK. A number of
questionnaires were produced for surveying chandlers, boatyards, harbour and marina operators and boat owners. Each survey group was surveyed either by telephone or post between April and July, 1998. A summary of the survey strategy that was used is shown in Table 6.4.

Table 6.4 Outline of approach used for antifouling usage survey.

<table>
<thead>
<tr>
<th>Survey Group</th>
<th>Number of samples</th>
<th>Survey Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocide Manufacturers</td>
<td>3 (2)</td>
<td>T</td>
</tr>
<tr>
<td>Paint Manufacturers</td>
<td>4 (2)</td>
<td>T, I</td>
</tr>
<tr>
<td>Chandlers</td>
<td>50 (50)</td>
<td>T, P, I</td>
</tr>
<tr>
<td>Harbours/Marinas</td>
<td>50 (50)</td>
<td>T, P, I</td>
</tr>
<tr>
<td>Boatyards</td>
<td>50 (50)</td>
<td>T, P, I</td>
</tr>
<tr>
<td>Shipyards</td>
<td>1 (1)</td>
<td>T</td>
</tr>
<tr>
<td>Boatowners</td>
<td>500 (390)</td>
<td>P</td>
</tr>
<tr>
<td>Royal Yachting Association</td>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>British Marine Industries Federation</td>
<td>1</td>
<td>T</td>
</tr>
</tbody>
</table>

T = Telephone Interview; P = Postal Survey; I = Face to Face Interview
Figures in parentheses refer to the number of respondents to the survey

The estimated numbers of leisure craft afloat in UK waters ranged from approximately 73,000 to 150,000. The mean boat length was 9.2 m and 47% were motor boats and 53% were sailing yachts. The average number of vessels kept in a UK marina was 213 (ranging from 30 – 500). The estimated surface area below the water line for an average vessel was 30.7 m². Due to their larger surface area, motorboats required a greater volume of antifouling paint than sailing yachts. The majority of vessels (85%) were antifouled annually with 7.5% being antifouled every 2 years and 6.5% being antifouled every 3 years. Generally, vessels were prepared for antifouling using pressure hosing and new paint was then applied on top of existing paint. The majority of boat owners did however remove all of the excess paint every 5 years.

The majority of vessels were antifouled ashore although a significant proportion (10.7%) were antifouled either on scrubbing piles or on the beach. Most boatyards (65%) disposed of scrapings and washings in waste bins, skips or controlled areas. A significant proportion (19.2%) of boatyards washed away the scrapings to the river or sea.

In addition to the above survey groups a number of biocide manufacturers were contacted to obtain information on the concentrations of biocides in antifouling products; and on the environmental fate, behaviour and effects of the antifouling biocides that they produce. In addition, information was obtained from Environmental Quality Standards where available (e.g. Lewis and Gardiner, 1996).

Five paint manufacturers and twenty nine antifouling paint products were identified containing either diuron, dichlofluanid, Irgarol 1051, zinc pyrithione, copper(I) oxide or copper thiocyanate. Reported concentrations in each product covered a wide range (Table 6.5) and for certain paints the biocides used changed with paint colour.
The rank order in terms of number of vessels treated with a particular biocide was copper(I) oxide > diuron > copper thiocyanate > Irgarol 1051 and zinc pyrithione > dichlofluanid. The other biocides that are approved for use by amateur owners (i.e. zineb, 2-thiocyanomethyl-benzothiazole, 2,3,5,6-tetrachloro-4-sulfuronylpyridine, and chlorothalonil) were not incorporated into any of the products identified.

Information on volumes of each product sold and concentrations of biocides in each of the products demonstrated that the rank total amounts of biocide used by boatowners and boatyards or sold by chandlers was copper(I) oxide > diuron > copper thiocyanate ≅ Irgarol 1051 ≅ zinc pyrithione > dichlofluanid (). Quantities of antifouling biocide distributed in the UK in a 1 year period ranged from 59 kg (minimum estimate for Irgarol 1051) to 331769 kg (maximum estimate for copper) (Table 6.5)

Table 6.5 Biocide in antifouling paints: concentration, use and distribution in the UK

<table>
<thead>
<tr>
<th>Concentration range (% w/w)</th>
<th>No. of products containing biocide</th>
<th>Proportion of boats treated (%)</th>
<th>Amount distributed in UK (kg/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper oxide</td>
<td>2.5 - 100</td>
<td>25</td>
<td>99 - 100</td>
</tr>
<tr>
<td>Copper thiocyanate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlofluanid</td>
<td>1.35 - 1.53</td>
<td>1</td>
<td>2.1 - 3.2</td>
</tr>
<tr>
<td>Diuron</td>
<td>1 - 5</td>
<td>5</td>
<td>45 - 52</td>
</tr>
<tr>
<td>Irgarol 1051</td>
<td>0.1 - 5.0</td>
<td>17</td>
<td>27 - 32</td>
</tr>
<tr>
<td>Zinc pyrithione</td>
<td>2 - 25</td>
<td>3</td>
<td>0.6 - 3.8</td>
</tr>
</tbody>
</table>

Figure 6-4 Biocide use

Percentage of each biocide used by boatowners (open bars), boatyards (hatched bars) or sold by chandlers (cross-hatched bars). CO = cuprous oxide; CT = copper thiocyanate; D = diuron; I = Irgarol 1051; ZP = zinc pyrithione; DF = dichlofluanid.
Estimations of the quantities of biocide used by leisure craft in UK waters were obtained based on estimates of the numbers of leisure craft afloat in UK coastal waters and on sales from UK chandlers and boatyards using the following equations.

\[B_{\text{boatyards}} = \left(\sum_{i=1}^{n} B_{\text{painti}} \cdot f \right) \cdot N_{\text{v}} \cdot V_{\text{b}} \]

\[B_{\text{chandlers}} = \left(\sum_{i=1}^{n} B_{\text{painti}} \cdot f \right) \cdot N_{\text{c}} \cdot V_{\text{c}} \]

\[B_{\text{total}} = B_{\text{boatyards}} + B_{\text{chandlers}} \]

Where:

- \(B_{\text{boatyards}} \), \(B_{\text{chandlers}} \) and \(B_{\text{total}} \) are the amounts of biocide used by UK boatyards, sold by UK chandlers and used in the UK respectively;
- \(B_{\text{painti}} \) is the amount of the paint that is biocide;
- \(N_{\text{v}} \) is the number of vessels treated by boatyards;
- \(N_{\text{c}} \) is the number of chandlers in the UK;
- \(f \) is the fraction of vessels treated with the biocide;
- \(V_{\text{b}} \) is the annual average volume of paint used by boatyards/vessel;
- \(V_{\text{c}} \) is the annual average volume of paint sold by chandlers.

The inputs of each biocide to the aquatic environment will be dependent on the method and location of paint application, the leaching behaviour of the biocide and the method by which residual antifouling paint is removed from the hull of a vessel. A number of approaches were used to assess the inputs of biocides from each of these sources.

6.2.2 Inputs from leaching

Product information on the volumes of each antifouling paint product used to paint leisure craft and on the concentrations of individual biocides in the products was used to obtain an average ‘worst case’ leaching rate for each biocide. It was assumed that the lifetime of the paint was 9 months and that all of the biocide leached from the paint during this nine month period.

\[\text{Leaching Rate (ug/cm2/day)} = \sum_{i=1}^{n} \frac{C_{i} \cdot N}{275 \cdot A} \]

Where:

- \(C \) is the concentration of biocide in the product;
- \(N \) is the number of coats of paint applied;
- \(A \) is the area covered by 1 l of paint (cm²/l).
The number of coats of paint was assumed to be 2; and the area covered by 1 l of paint was assumed to be 94000 cm² (International, 1998).

Estimates of total inputs to the aquatic environment from leaching were obtained based on the assumption that an average leisure craft has a surface area below the waterline of 30.7 m² and that there are between 72,766 and 150,000 leisure craft that are antifouled in UK coastal waters.

Calculated mean leaching rates for the biocides ranged from 0.12 (Irgarol 1051) to 25.3 (copper) (Table 6.6). The rank order for the leaching rates was copper(I) oxide > copper thiocyanate > zinc pyrithione > diuron > Irgarol 1051 and dichlofluanid. Tonnages of biocide leaching into the environment (based on estimated boat number in UK waters) ranged from 0.98 tonnes (Irgarol 1051) to 425.7 tonnes (copper oxide).

Contributions from antifoulant paints for zinc would be negligible compared with inputs from sacrificial anodes attached to the hulls and props of vessels as an anti-corrosion measure due to the limited usage of zinc pyrithione. Typically, 2kg of zinc are used per boat of which 60% dissolves per season (Environment Agency antifoulant survey data). Assuming that each boat spends 9 months of the year in the water then a leaching rate (µg/cm²/day) can be calculated for the leaching rate of zinc anodes into the water. It is this figure that has been used in the model for validation purposes.

Table 6.6 Calculated leaching rates for booster biocides present in antifouling paints applied to small vessels.

Data represent means; maximum and minimum rates are shown in parentheses.

<table>
<thead>
<tr>
<th>Biocide</th>
<th>Minimum leaching rate (µg/cm²/day)</th>
<th>Maximum leaching rate (µg/cm²/day)</th>
<th>Minimum inputs (Tonnes)</th>
<th>Maximum inputs (Tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper oxide</td>
<td>16.12 (1.74 - 34.82)</td>
<td>25.33 (6.96 – 69.63)</td>
<td>131.4</td>
<td>425.7</td>
</tr>
<tr>
<td>Copper thiocyanate</td>
<td>5.13 (4.1 - 6.15)</td>
<td>9.23 (8.20 - 10.25)</td>
<td>41.8</td>
<td>155.1</td>
</tr>
<tr>
<td>Diuron</td>
<td>1.39 (0.77 - 1.93)</td>
<td>4.64 (1.93 – 7.74)</td>
<td>11.3</td>
<td>78.0</td>
</tr>
<tr>
<td>Irgarol 1051</td>
<td>0.12 (0.078 - 0.39)</td>
<td>3.40 (1.55 - 3.87)</td>
<td>0.98</td>
<td>57.1</td>
</tr>
<tr>
<td>Zinc pyrithione</td>
<td>4.64 (1.55 - 7.74)</td>
<td>13.54 (7.74 – 19.34)</td>
<td>37.8</td>
<td>227.6</td>
</tr>
<tr>
<td>Dichlofluanid</td>
<td>1.04 (-)</td>
<td>1.04 (-)</td>
<td>8.48</td>
<td>17.5</td>
</tr>
</tbody>
</table>

6.2.3 Inputs from pressure hosing

Data was only available on the releases of copper during pressure hosing of vessels in the Netherlands. This showed that amounts of copper removed during pressure hosing ranged from 90 – 2800 mg/vessel (CUWVO,1991). The total amount of copper entering the environment through water blasting was therefore estimated using this information along with information on boat numbers in UK waters.

Assuming that the number of leisure craft in UK waters is somewhere between 72,766 and 150,000, the amount of copper released during pressure hosing was calculated to be between 6.5 and 420 kg, this is approximately 0.1 % of the amount released from leaching.
6.2.4 Initial validation exercise

Some example data for the initial validation exercise are shown below in Figures 6.6 and 6.7.

The predicted concentrations for the River Orwell showed reasonable agreement with the measured values for marina and estuary waters (and for the sediments which are not shown here) for all of the biocides. However for the Hamble, there was much poorer agreement between predicted and measured concentrations, the predicted values tending to be significantly higher than the measured values particularly for segment one. Further examination of the available input data relating to amounts of the biocides used in antifouling paints and the amounts of the paints used at each of the locations showed some areas for modification of input values. Similarly for examination of the data on the numbers of boats and ships in the marinas and estuary segments. However, the uncertainty in these values would not of itself, account for the over-estimate produced by the model. Close scrutiny of the model calculations showed that the values used for the flows between the segments were probably too low since the residence times for the water were far too high. This was partly due to the fact that the flow into an estuarine segment from its associated marina was not balanced by an equivalent flow back to the marina or out of the segment into the adjacent downstream segment. This flow discrepancy was rectified for all of the marinas as shown in Figure 6.5 below. Revised input values were also estimated for the proportion of boats treated and the numbers of boats in each marina.

Each segment of the estuary was considered to be a box, as shown below:

![Diagram of estuary segment]

In order for the salinity (S) of a segment to be preserved, the combined water inputs from the upstream segment (or river) and downstream segment must result in the salinity observed. The rate of the water entering in the upstream input is the total water from any rivers and marinas on or above that segment. These conditions can be described thus:

\[S = \frac{TW + UX}{W + X} \]

From this, the volume entering from the downstream segment can be calculated as:

\[X = \frac{W(S - T)}{(U - S)} \]

The total flow though the segment, assuming the volume (V) does not change, is the sum of W and X.

Figure 6-5 Calculation of the flows through model segments
Figure 6-6 Dissolved concentrations in Orwell estuary from initial validation exercise
Figure 6-7 Dissolved concentrations in Hamble Estuary from initial validation exercise
6.2.5 Second validation exercise

The data used for this validation exercise are shown in the following Tables.

Table 6.7 Concentration data used for model

<table>
<thead>
<tr>
<th>Input Parameter</th>
<th>Zinc</th>
<th>Copper</th>
<th>Diuron</th>
<th>Irgarol 1051</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input of biocide from river (µg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orwell</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hamble</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Crouch</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Soton Water</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Receiving waters (all estuaries) (µg/l)</td>
<td>1</td>
<td>0.5</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Leaching rates (µg cm⁻² day⁻¹)</td>
<td>as default</td>
<td>16.12</td>
<td>1.39</td>
<td>0.12</td>
</tr>
<tr>
<td>Temp (°C)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 6.8 Marina data used for model

<table>
<thead>
<tr>
<th>Estuary</th>
<th>No. of Boats</th>
<th>Name of Marina</th>
<th>Water half time (hrs)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crouch</td>
<td>300</td>
<td>Burnham marina</td>
<td>12</td>
<td>Nos. based on CEFAS data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concrete basin marina</td>
</tr>
<tr>
<td>Soton Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>300</td>
<td>Ocean village</td>
<td>12</td>
<td>Nos. based on CEFAS data</td>
</tr>
<tr>
<td>M2</td>
<td>500</td>
<td>Hythe marina</td>
<td>48</td>
<td>Nos. based on CEFAS data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Locked marina</td>
</tr>
<tr>
<td>Orwell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>as default</td>
<td>Fox</td>
<td>12</td>
<td>Marina situated in inlet</td>
</tr>
<tr>
<td>M2</td>
<td>as default</td>
<td>Woolverstone</td>
<td>12</td>
<td>Pontooned marina</td>
</tr>
<tr>
<td>M3</td>
<td>as default</td>
<td>Shotley</td>
<td>48</td>
<td>Locked marina</td>
</tr>
<tr>
<td>Hamble</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>as default</td>
<td>Swanwick</td>
<td>12</td>
<td>Pontooned marina</td>
</tr>
<tr>
<td>M3</td>
<td>as default</td>
<td>Hamble Point</td>
<td>12</td>
<td>Pontooned marina</td>
</tr>
</tbody>
</table>
Outputs from the model were compared with estuarine and marina sediment and dissolved values obtained from the winter and summer monitoring surveys of the Orwell and Hamble estuaries. The measured values for dissolved diuron and Irgarol 1051 in the Crouch and Southampton Water were the mean of 6 monthly values (Apr-Oct 1998) reported by CEFAS.

Selected results from the second validation exercise are shown for Orwell and Hamble waters in Figures 6-8 and 6-9. Model predictions for the two estuaries where a full set of ‘actual’ dissolved and particulate biocide concentrations were available, show good agreement, particularly for the Orwell estuary. The overestimation for the Hamble is no longer so great, less than a factor of four in the worst case.

Predictions for the organic biocides (diuron and Irgarol 1051), where antifoulant paints are the predominant source, match the measured data well with concentrations in the marinas significantly higher than in the estuarine water. The low affinity of diuron and Irgarol 1051 for the sediment (particulate) phase is also reflected in the model outputs, where concentrations were predicted to be less than the analytical limits of detection (as confirmed during the surveys).

For copper and zinc the model data is lower than measured values, particularly for the sediment, which reflects the fact that antifoulant paints are not the only source of these elements. Industrial inputs, sewage effluent, runoff and atmospheric fallout all contribute to the inputs of trace metals to estuaries. Under these conditions the model is useful in allowing an estimate of the likely contribution of antifoulants/sacrificial anodes to the metal burden within an estuary.

Good agreement between measured (where available) and predicted values for the Crouch and Southampton Water provide a degree of confidence that the model will accurately predict biocide concentrations in estuaries where data is limited, provided realistic input values can be obtained (e.g. biocide partition coefficients and leaching rates, estuarine flow data etc).

The full validation dataset is shown in Appendix E.
Figure 6-8 Dissolved concentrations in Orwell Estuary
Figure 6-9 Dissolved concentrations in Hamble Estuary
7. CONCLUSIONS

Biocides used in antifoulant paint formulations on boats and ships are input to the aquatic environment from a multitude of point sources. In marinas, harbours and estuaries, the majority of that input probably occurs when the vessels are moored.

The review of existing environmental fate models showed that none of these was ideally suited for the prediction of environmental concentrations of antifoulant biocides in waters and sediments of marinas, harbours and estuaries.

REMA (Regulatory Environmental Modelling of Antifoulants), a new environmental model has been developed based on the Mackay fugacity concept and a quantitative water, air and sediment interaction model and was set up for four UK estuaries.

A field sampling and laboratory analysis exercise was carried out during the summer and winter periods and provided measured concentration data for four antifoulant biocides in waters and sediments from two of the four selected estuaries.

An extensive study of laboratory partitioning of the four biocides produced a good understanding of the factors controlling their behaviour and good quality data for use in the model.

Initial validation of the model, by comparison of the predicted concentrations with measured concentrations, showed that for some of the biocides for some parts of the estuaries, the model significantly overestimated the concentrations actually present.

Further examination and modification of some of the input and environmental values and re-validation of the model produced predictions, for the two estuaries where a full set of data were available, which showed good agreement with measured data. The predictions were particularly good for the Orwell estuary and the previous overestimation for the Hamble estuary was reduced significantly.
8. RECOMMENDATIONS

When using the REMA model for biocides or estuaries other than those for which the model has been validated, particular attention should be paid to critical input parameters such as leaching rate, partition coefficients and estuarine flows. These parameters have the most significant effects on the PEC's (Predicted Environmental Concentrations) produced and need to be as accurate as possible to ensure the accuracy of the predictions.

The model has been validated using a limited monitoring dataset from two estuaries. If the model is applied to other estuaries with distinctly different environmental characteristics, then validation involving comparison of PEC's with measured concentrations of biocides should be carried out.

Installation and use of the REMA model software has been tested on a number of PCs using MS Windows 95® and MS Windows NT® operating systems. If the software is installed for use on another operating system it should be tested to ensure that it functions correctly. User guidance (Appendix F) and GWBASIC programme (Appendix G) have been provided. However, additional use of the REMA programme for purposes other than that for which it has been developed will require expert knowledge, additional data and validation.
9. ACKNOWLEDGEMENTS

The authors would like to acknowledge the help and assistance of Neil Patrick (Patrick and Associates, Caversham, Reading) who programmed the software. In addition we would like to thank the various marina owners and managers, harbour masters and skippers who helped us with their expert knowledge during the course of the project.

We would also like to thank CEFAS and PML for providing copies of their environmental analysis data on antifoulants in UK waters that were used in the validation of the model.
10. REFERENCES

APPENDIX A LUTTIK MODEL DETAILS

An Evaluation System for Pesticides (ESPE), which included a marina model that could be used for predicting the environmental concentrations of pesticides, was published by Luttik et al (1992). This model was incorporated into the environmental risk assessment software, USES (Uniform System for the Evaluation of Substances) developed by the National Institute of Public Health and Environmental Protection (RIVM). It has been used in the assessment of a number of antifoulants and an overview of the model is given below.

Emissions of antifoulings to the environment during the consumer phase

For calculating the risk of antifoulings in the aquatic environment a middle size yacht-basin is modelled. For this calculation it is necessary to have results of a lixivation study (average flux over a certain period).

Hazard evaluation for water organisms and indirect exposure will be handled analogous to agricultural pesticides.

Input/output of emissions of antifoulings

<table>
<thead>
<tr>
<th>variable [unit]</th>
<th>symbol</th>
<th>S/D/E/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of yachts in yacht-basin</td>
<td>N_{ship}</td>
<td>D</td>
</tr>
<tr>
<td>Mean ship deck area [m2]</td>
<td>$\text{DECKAREA}_{\text{avg}}$</td>
<td>D</td>
</tr>
<tr>
<td>Water/ship ratio in yacht-basin</td>
<td>$R_{\text{w/s}}$</td>
<td>D</td>
</tr>
<tr>
<td>Fraction of ships in water in the summer</td>
<td>F_{ship}</td>
<td>D</td>
</tr>
<tr>
<td>Volume of paint per yacht [m3]</td>
<td>L_{antli}</td>
<td>SID</td>
</tr>
<tr>
<td>Cover of antifouling paint [m2.m$^{-3}$]</td>
<td>R_{antli}</td>
<td>S/D</td>
</tr>
<tr>
<td>Depth of yacht-basin [m]</td>
<td>DEPTH_{y-b}</td>
<td>D</td>
</tr>
<tr>
<td>Fraction ships in yacht-basin</td>
<td>$F_{\text{s/ns}}$</td>
<td>D</td>
</tr>
<tr>
<td>Mean flux of compound [kg m$^{-2}$.s$^{-1}$]</td>
<td>$\text{FLUX}_{\text{antli}}$</td>
<td>S/D</td>
</tr>
<tr>
<td>DT50 for advection in the yacht-basin [s]</td>
<td>$\text{DT50}_{\text{advec. y-b}}$</td>
<td>D</td>
</tr>
<tr>
<td>variable [unit]</td>
<td>symbol</td>
<td>S/D/E/O</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Suspended solids-water partition</td>
<td>$K_{P_{susp}}$</td>
<td>SIE</td>
</tr>
<tr>
<td>coefficient [m3.kg$^{-1}$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration suspended matter in</td>
<td>$S_{\text{SUSPCONC}_{surf}}$</td>
<td>D</td>
</tr>
<tr>
<td>water [kg.m$^{-3}$]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First order degradation rate for</td>
<td>$k_{\text{deg}_{water}}$</td>
<td>E</td>
</tr>
<tr>
<td>biodegradation in water [s$^{-1}$]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

output

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium diss. conc. in yacht-basin water in</td>
<td>$C_{\text{waterpest, equi}}$</td>
</tr>
<tr>
<td>summer [kg.m$^{-3}$] (this concentration is used for</td>
<td></td>
</tr>
<tr>
<td>the periods of 0, 4, 21, 28, $T_{\text{bird}_{\text{toxtest}}}$,</td>
<td></td>
</tr>
<tr>
<td>$T_{\text{mammal}_{\text{toxtest}}}$, days</td>
<td></td>
</tr>
<tr>
<td>and one year)</td>
<td></td>
</tr>
</tbody>
</table>

Model calculations

Necessary harbour area per yacht

$$ARA_{w/s} = (1 + R_{w/s}) \cdot \text{DECKAREA}_{\text{avg}}$$

Total water volume [m3]

$$VOLUME_{\text{water,y-b}} = N_{\text{ship}} \cdot ARA_{w/s} \cdot DEPTH_{y-b}$$

Antifouling surface area in the yacht-basin (m2)

$$\text{AREA}_{\text{anti}} = R_{\text{anti}} \cdot L_{\text{anti}} \cdot N_{\text{ship}} \cdot F_{\text{ship}} \cdot F_{s/ns}$$

Average emission per unit of volume of yacht-basin water [kg s$^{-1}$ m$^{-3}$]

$$E_{\text{avg,y-b}} = \frac{\text{AREA}_{\text{anti}} \cdot FLUX_{\text{anti}}}{VOLUME_{\text{water,y-b}}}$$
First order rate constant for advection in the yacht-basin [s⁻¹]

\[k_{\text{advec,y-b}} = \frac{\ln 2}{\text{DT50}_{\text{advec,y-b}}} \]

Fraction of the chemical dissolved

\[F_{\text{diss},y-b} = \frac{1}{1 + K_{p_{\text{susp}}} \cdot \text{SUSPCONC}_{\text{surf}}} \]

Total first order rate constant [s⁻¹]

\[k_{y-b} = k_{\text{degwater}} \cdot F_{\text{diss},y-b} + k_{\text{advec,y-b}} \]

Equilibrium dissolved concentration in the yacht-basin in the summer [kg_chem m⁻³]

\[C_{\text{water, pest, equi}} = E_{\text{avg}_y-b} \cdot F_{\text{diss},y-b} \frac{k_{y-b}}{k_{y-b}} \]
Table B-1 Data for summer survey of Orwell Estuary - Low water samples

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Sampling time</th>
<th>Distance from freshwater interface (km)</th>
<th>Temp (°C)</th>
<th>Salinity (‰/oo)</th>
<th>Suspended solids (mg/l)</th>
<th>Diuron (ng/l)</th>
<th>Irgarol 1051 (ng/l)</th>
<th>Cu (µg/l)</th>
<th>Zn (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9L</td>
<td>27/08/98</td>
<td>10:25</td>
<td>2.0</td>
<td>16.6</td>
<td>34.6</td>
<td>18.2</td>
<td>76.7</td>
<td><10.0</td>
<td>1.12</td>
<td>3.09</td>
</tr>
<tr>
<td>FOX 1L</td>
<td>26/08/98</td>
<td>19:05</td>
<td>2.0</td>
<td>16.0</td>
<td>26</td>
<td>10.9</td>
<td>257.4</td>
<td>35.7</td>
<td>10.15</td>
<td>10.2</td>
</tr>
<tr>
<td>FOX 2L</td>
<td>26/08/98</td>
<td>19:05</td>
<td>2.0</td>
<td>16.0</td>
<td>20.5</td>
<td>12.6</td>
<td>264.0</td>
<td>59.4</td>
<td>8.96</td>
<td>9.8</td>
</tr>
<tr>
<td>FOX 3L</td>
<td>26/08/98</td>
<td>19:05</td>
<td>2.0</td>
<td>16.2</td>
<td>29</td>
<td>13.1</td>
<td>342.2</td>
<td>56.3</td>
<td>6.14</td>
<td>9.4</td>
</tr>
<tr>
<td>8L</td>
<td>27/08/98</td>
<td>10:11</td>
<td>3.3</td>
<td>16.6</td>
<td>34.5</td>
<td>20.3</td>
<td>67.7</td>
<td>10.7</td>
<td>1.21</td>
<td>2.45</td>
</tr>
<tr>
<td>7L</td>
<td>27/08/98</td>
<td>10:00</td>
<td>5.0</td>
<td>16.4</td>
<td>34.7</td>
<td>22.5</td>
<td>50.8</td>
<td><10.7</td>
<td>1.31</td>
<td>2.45</td>
</tr>
<tr>
<td>6L</td>
<td>27/08/98</td>
<td>09:53</td>
<td>6.7</td>
<td>16.0</td>
<td>34.5</td>
<td>22.4</td>
<td>93.9</td>
<td><11.8</td>
<td>1.34</td>
<td>2.16</td>
</tr>
<tr>
<td>WOOL 1L</td>
<td>26/08/98</td>
<td>19:30</td>
<td>6.7</td>
<td>16.0</td>
<td>34.4</td>
<td>32.0</td>
<td>136.0</td>
<td>26.8</td>
<td>2.79</td>
<td>2.88</td>
</tr>
<tr>
<td>WOOL 2L</td>
<td>26/08/98</td>
<td>19:30</td>
<td>6.7</td>
<td>16.0</td>
<td>34.1</td>
<td>28.1</td>
<td>77.7</td>
<td>11.4</td>
<td>2.34</td>
<td>2.76</td>
</tr>
<tr>
<td>WOOL 3L</td>
<td>26/08/98</td>
<td>19:30</td>
<td>6.7</td>
<td>16.0</td>
<td>34.3</td>
<td>31.3</td>
<td>169.7</td>
<td>21.4</td>
<td>1.85</td>
<td>2.25</td>
</tr>
<tr>
<td>5L</td>
<td>27/08/98</td>
<td>09:45</td>
<td>8</td>
<td>16.0</td>
<td>34.8</td>
<td>23.3</td>
<td>82.7</td>
<td>23.7</td>
<td>1.32</td>
<td>1.97</td>
</tr>
<tr>
<td>4L</td>
<td>27/08/98</td>
<td>09:35</td>
<td>9.3</td>
<td>16.0</td>
<td>34.8</td>
<td>23.9</td>
<td>57.1</td>
<td><11.3</td>
<td>1.17</td>
<td>1.67</td>
</tr>
<tr>
<td>3L</td>
<td>27/08/98</td>
<td>09:25</td>
<td>11</td>
<td>15.8</td>
<td>35.1</td>
<td>21.6</td>
<td>42.9</td>
<td><14.0</td>
<td>1.18</td>
<td>1.51</td>
</tr>
<tr>
<td>2L</td>
<td>27/08/98</td>
<td>09:13</td>
<td>12.7</td>
<td>15.4</td>
<td>35.8</td>
<td>26.5</td>
<td>23.7</td>
<td><10.0</td>
<td>1.15</td>
<td>1.27</td>
</tr>
<tr>
<td>1L</td>
<td>27/08/98</td>
<td>09:00</td>
<td>15.3</td>
<td>15.8</td>
<td>36.2</td>
<td>29.9</td>
<td><4.0</td>
<td><10.0</td>
<td>1.29</td>
<td>1.12</td>
</tr>
</tbody>
</table>

1 Fox's Marina; 2 Woolverstone Marina; 3 Shotley Marina
Table B-2 Data for summer survey of Orwell Estuary - High water samples

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Sampling time</th>
<th>Distance from Freshwater interface (km)</th>
<th>Temp (°C)</th>
<th>Salinity (°/oo)</th>
<th>Suspended Solids (mg/l)</th>
<th>Dissolved Concentrations</th>
<th>Sediment Concentrations</th>
<th>% <63µm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diuron (ng/l)</td>
<td>Irgarol 1051 (ng/l)</td>
<td>Cu (µg/kg)</td>
</tr>
<tr>
<td>9H</td>
<td>27/08/98</td>
<td>15:05</td>
<td>2</td>
<td>20.6</td>
<td>34.5</td>
<td>20.8</td>
<td>102.6</td>
<td>30.8</td>
<td>1.15</td>
</tr>
<tr>
<td>Fox 1H</td>
<td>26/08/98</td>
<td>14:00</td>
<td>2</td>
<td>18</td>
<td>26.2</td>
<td>12.4</td>
<td>625.9</td>
<td>78.6</td>
<td>8.5</td>
</tr>
<tr>
<td>Fox 2H</td>
<td>26/08/98</td>
<td>14:00</td>
<td>2</td>
<td>17.2</td>
<td>32</td>
<td>14.3</td>
<td>431.4</td>
<td>53.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Fox 3H</td>
<td>26/08/98</td>
<td>14:00</td>
<td>2</td>
<td>17.4</td>
<td>30.9</td>
<td>16</td>
<td>362.7</td>
<td>64.3</td>
<td>6.32</td>
</tr>
<tr>
<td>8H</td>
<td>27/08/98</td>
<td>15:13</td>
<td>3.3</td>
<td>17</td>
<td>35.5</td>
<td>21.6</td>
<td>91.4</td>
<td>21.3</td>
<td>1.22</td>
</tr>
<tr>
<td>7H</td>
<td>27/08/98</td>
<td>15:20</td>
<td>5</td>
<td>17.6</td>
<td>35.2</td>
<td>20.2</td>
<td>54.1</td>
<td>21.3</td>
<td>1.22</td>
</tr>
<tr>
<td>6H</td>
<td>27/08/98</td>
<td>15:30</td>
<td>6.7</td>
<td>17.3</td>
<td>36</td>
<td>21.5</td>
<td>37.2</td>
<td>13</td>
<td>1.22</td>
</tr>
<tr>
<td>Wool 1H 2</td>
<td>26/08/98</td>
<td>15:30</td>
<td>6.7</td>
<td>16.8</td>
<td>35.2</td>
<td>21.6</td>
<td>141.5</td>
<td>16.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Wool 2H</td>
<td>26/08/98</td>
<td>15:30</td>
<td>6.7</td>
<td>17</td>
<td>35</td>
<td>22</td>
<td>104.6</td>
<td><14.7</td>
<td>2.31</td>
</tr>
<tr>
<td>Wool 3H</td>
<td>26/08/98</td>
<td>15:30</td>
<td>6.7</td>
<td>17</td>
<td>35.1</td>
<td>26.1</td>
<td>73.1</td>
<td>62.5</td>
<td>1.55</td>
</tr>
<tr>
<td>5H</td>
<td>27/08/98</td>
<td>15:40</td>
<td>8</td>
<td>16.8</td>
<td>36.6</td>
<td>31.4</td>
<td><5.6</td>
<td>15.8</td>
<td>1.11</td>
</tr>
<tr>
<td>4H</td>
<td>27/08/98</td>
<td>15:50</td>
<td>9.3</td>
<td>16.8</td>
<td>36.4</td>
<td>25.5</td>
<td><3.4</td>
<td>14.2</td>
<td>1.13</td>
</tr>
<tr>
<td>3H</td>
<td>27/08/98</td>
<td>16:00</td>
<td>11</td>
<td>16.6</td>
<td>36.6</td>
<td>19.2</td>
<td><5.6</td>
<td><15</td>
<td>1.16</td>
</tr>
<tr>
<td>2H</td>
<td>27/08/98</td>
<td>16:10</td>
<td>12.7</td>
<td>16.8</td>
<td>36.6</td>
<td>34.4</td>
<td><5.6</td>
<td>26.5</td>
<td>1.17</td>
</tr>
<tr>
<td>1H</td>
<td>27/08/98</td>
<td>16:30</td>
<td>15.3</td>
<td>16.8</td>
<td>36.6</td>
<td>37.8</td>
<td><4.2</td>
<td>11.4</td>
<td>0.94</td>
</tr>
<tr>
<td>Shot 1H 3</td>
<td>26/08/98</td>
<td>16:30</td>
<td>15.3</td>
<td>16.8</td>
<td>36.4</td>
<td>20</td>
<td>880</td>
<td>234.5</td>
<td>6.19</td>
</tr>
<tr>
<td>Shot 2H</td>
<td>26/08/98</td>
<td>16:30</td>
<td>15.3</td>
<td>16.8</td>
<td>36.2</td>
<td>26</td>
<td>576</td>
<td>160</td>
<td>5.63</td>
</tr>
<tr>
<td>Shot 3H</td>
<td>26/08/98</td>
<td>16:30</td>
<td>15.3</td>
<td>16.8</td>
<td>36.3</td>
<td>23.5</td>
<td>847</td>
<td>209.7</td>
<td>5.48</td>
</tr>
</tbody>
</table>

1 Fox's Marina; 2 Woolverstone Marina; 3 Shotley Marina
Table B-3 Data for winter survey of Orwell Estuary (high tide)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Time</th>
<th>Distance Downstream (km)</th>
<th>Temp (°C)</th>
<th>Salinity (‰)</th>
<th>Suspended Solids (mg/l)</th>
<th>Diuron (ng/l)</th>
<th>Irgarol 1051 (ng/l)</th>
<th>Cu (µg/l)</th>
<th>Zn (µg/l)</th>
<th>Diuron (µg/kg)</th>
<th>Irgarol 1051 (µg/kg)</th>
<th>%<63µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>25/02/99</td>
<td>13:00</td>
<td>2</td>
<td>4.9</td>
<td>29.9</td>
<td>11</td>
<td>66.6</td>
<td>5.1</td>
<td>1.93</td>
<td>9.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox 1</td>
<td>24/02/99</td>
<td>12:10</td>
<td>2</td>
<td>8.1</td>
<td>3.5</td>
<td>13</td>
<td>31.3</td>
<td>13.8</td>
<td>3.95</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox 2</td>
<td>24/02/99</td>
<td>12:20</td>
<td>2</td>
<td>6.4</td>
<td>6.5</td>
<td>6.6</td>
<td>70.7</td>
<td>23.1</td>
<td>3.38</td>
<td>10.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox 3</td>
<td>24/02/99</td>
<td>12:30</td>
<td>2</td>
<td>5.8</td>
<td>8</td>
<td>7.4</td>
<td>50.3</td>
<td>37</td>
<td>3.67</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25/02/99</td>
<td>12:50</td>
<td>3.3</td>
<td>5</td>
<td>29</td>
<td>13.1</td>
<td>22.2</td>
<td>4.8</td>
<td>1.39</td>
<td>7.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25/02/99</td>
<td>12:35</td>
<td>5</td>
<td>4.8</td>
<td>31</td>
<td>15.2</td>
<td>28.8</td>
<td>4.3</td>
<td>1.39</td>
<td>6.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>25/02/99</td>
<td>12:25</td>
<td>6.7</td>
<td>4.7</td>
<td>31</td>
<td>11.8</td>
<td>31.9</td>
<td>5.3</td>
<td>1.31</td>
<td>5.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wool 1</td>
<td>24/02/99</td>
<td>14:50</td>
<td>6.7</td>
<td>6.4</td>
<td>32.3</td>
<td>15.2</td>
<td>32.5</td>
<td>3.5</td>
<td>1.96</td>
<td>6.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wool 2</td>
<td>24/02/99</td>
<td>14:59</td>
<td>6.7</td>
<td>5.8</td>
<td>32</td>
<td>19.5</td>
<td>23</td>
<td>10.2</td>
<td>1.8</td>
<td>6.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wool 3</td>
<td>24/02/99</td>
<td>15:05</td>
<td>6.7</td>
<td>5.4</td>
<td>32.4</td>
<td>24.6</td>
<td>10.1</td>
<td>3</td>
<td>1.31</td>
<td>5.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25/02/99</td>
<td>12:15</td>
<td>8</td>
<td>4.4</td>
<td>31.5</td>
<td>14.9</td>
<td>16.9</td>
<td>7.9</td>
<td>1.28</td>
<td>4.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25/02/99</td>
<td>12:00</td>
<td>9.3</td>
<td>4.4</td>
<td>32.4</td>
<td>13.5</td>
<td>12.6</td>
<td>3</td>
<td>1.15</td>
<td>4.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25/02/99</td>
<td>11:50</td>
<td>11</td>
<td>4.6</td>
<td>33</td>
<td>14.2</td>
<td>14.4</td>
<td>5.9</td>
<td>1</td>
<td>4.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25/02/99</td>
<td>11:40</td>
<td>12.7</td>
<td>4.4</td>
<td>33.7</td>
<td>22.9</td>
<td>17.3</td>
<td>6.9</td>
<td>0.74</td>
<td>4.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25/02/99</td>
<td>11:20</td>
<td>15.3</td>
<td>5.2</td>
<td>34.4</td>
<td>26.6</td>
<td>17.3</td>
<td>7.4</td>
<td>0.76</td>
<td>3.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot 1</td>
<td>24/02/99</td>
<td>15:45</td>
<td>15.3</td>
<td>5</td>
<td>35.2</td>
<td>13.2</td>
<td>251.1</td>
<td>52.3</td>
<td>6.65</td>
<td>21.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot 2</td>
<td>24/02/99</td>
<td>16:00</td>
<td>15.3</td>
<td>4.6</td>
<td>35</td>
<td>11</td>
<td>259.2</td>
<td>57.6</td>
<td>7.01</td>
<td>18.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot 3</td>
<td>24/02/99</td>
<td>16:05</td>
<td>15.3</td>
<td>5</td>
<td>34.9</td>
<td>16.2</td>
<td>396.0</td>
<td>78.0</td>
<td>6.54</td>
<td>19.61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Fox's Marina;
2 Woolverstone Marina;
3 Shotley Marina
Table B-4 Data for summer survey of Hamble Estuary (high tide)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Time</th>
<th>Distance from Bursledon bridge (km)</th>
<th>T (°C)</th>
<th>Salinity (‰)</th>
<th>Suspended Solids (mg/l)</th>
<th>Dissolved Concentration</th>
<th>Sediment Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cu (µg/l)</td>
<td>Zn (µg/l)</td>
</tr>
<tr>
<td>10</td>
<td>25/9/98</td>
<td>12:25</td>
<td>0.5</td>
<td>17.6</td>
<td>33.5</td>
<td>20.3</td>
<td>3.55</td>
<td>9.59</td>
</tr>
<tr>
<td>11a†</td>
<td>25/9/98</td>
<td>12:30</td>
<td>0.5</td>
<td>17.6</td>
<td>33.6</td>
<td>19.3</td>
<td>3.55</td>
<td>8.98</td>
</tr>
<tr>
<td>11b</td>
<td>25/9/98</td>
<td>12:35</td>
<td>0.5</td>
<td>17.6</td>
<td>33.6</td>
<td>20.2</td>
<td>3.41</td>
<td>7.55</td>
</tr>
<tr>
<td>11c</td>
<td>25/9/98</td>
<td>12:45</td>
<td>0.5</td>
<td>17.6</td>
<td>33.6</td>
<td>19.4</td>
<td>4.02</td>
<td>11.02</td>
</tr>
<tr>
<td>9</td>
<td>25/9/98</td>
<td>12:20</td>
<td>0.7</td>
<td>17.6</td>
<td>33.8</td>
<td>19.9</td>
<td>2.99</td>
<td>6.73</td>
</tr>
<tr>
<td>6</td>
<td>25/9/98</td>
<td>12:00</td>
<td>1.3</td>
<td>18</td>
<td>34</td>
<td>24.7</td>
<td>2.65</td>
<td>5.92</td>
</tr>
<tr>
<td>8</td>
<td>25/9/98</td>
<td>12:10</td>
<td>2</td>
<td>17.6</td>
<td>34.5</td>
<td>19.4</td>
<td>2.85</td>
<td>6.33</td>
</tr>
<tr>
<td>7</td>
<td>25/9/98</td>
<td>12:05</td>
<td>2.6</td>
<td>17</td>
<td>35.2</td>
<td>21.5</td>
<td>3.21</td>
<td>6.73</td>
</tr>
<tr>
<td>4</td>
<td>25/9/98</td>
<td>11:35</td>
<td>3.2</td>
<td>18</td>
<td>34.5</td>
<td>24.5</td>
<td>3.18</td>
<td>7.14</td>
</tr>
<tr>
<td>5a²</td>
<td>25/9/98</td>
<td>11:40</td>
<td>3.2</td>
<td>18</td>
<td>34.8</td>
<td>24.5</td>
<td>3.49</td>
<td>8.37</td>
</tr>
<tr>
<td>5b</td>
<td>25/9/98</td>
<td>11:45</td>
<td>3.2</td>
<td>18</td>
<td>34.5</td>
<td>18</td>
<td>3.10</td>
<td>6.33</td>
</tr>
<tr>
<td>5c</td>
<td>25/9/98</td>
<td>11:50</td>
<td>3.2</td>
<td>18</td>
<td>34</td>
<td>23.1</td>
<td>4.05</td>
<td>7.86</td>
</tr>
<tr>
<td>3</td>
<td>25/9/98</td>
<td>11:30</td>
<td>3.9</td>
<td>18.2</td>
<td>35</td>
<td>26</td>
<td>1.31</td>
<td>3.47</td>
</tr>
<tr>
<td>2</td>
<td>25/9/98</td>
<td>11:15</td>
<td>4.4</td>
<td>17.8</td>
<td>35.7</td>
<td>39.3</td>
<td>1.09</td>
<td>1.84</td>
</tr>
<tr>
<td>1</td>
<td>25/9/98</td>
<td>11:00</td>
<td>5.9</td>
<td>19</td>
<td>35.7</td>
<td>24.4</td>
<td>1.06</td>
<td>1.63</td>
</tr>
</tbody>
</table>

† Swanwick Marina ‡ Hamble Point Marina
Table B-5 Data for winter survey of Hamble Estuary (high tide 10:45 and 13:00)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Time</th>
<th>Distance from Bursledon bridge (km)</th>
<th>T (°C)</th>
<th>S (°/oo)</th>
<th>Suspended Solids (mg/l)</th>
<th>Dissolved concentrations</th>
<th>Sediment Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cu (µg/l)</td>
<td>Zn (µg/l)</td>
</tr>
<tr>
<td>10</td>
<td>16/2/99</td>
<td>11:35</td>
<td>0.5</td>
<td>7</td>
<td>22.5</td>
<td>20.3</td>
<td>1.78</td>
<td>8.46</td>
</tr>
<tr>
<td>11a1</td>
<td>16/2/99</td>
<td>11:45</td>
<td>0.5</td>
<td>7</td>
<td>31.4</td>
<td>19.3</td>
<td>2.11</td>
<td>10.41</td>
</tr>
<tr>
<td>11b</td>
<td>16/2/99</td>
<td>11:45</td>
<td>0.5</td>
<td>7</td>
<td>31.2</td>
<td>20.2</td>
<td>1.69</td>
<td>7.31</td>
</tr>
<tr>
<td>11c</td>
<td>16/2/99</td>
<td>11:45</td>
<td>0.5</td>
<td>7</td>
<td>31</td>
<td>19.4</td>
<td>1.35</td>
<td>6.24</td>
</tr>
<tr>
<td>9</td>
<td>16/2/99</td>
<td>11:30</td>
<td>0.7</td>
<td>7</td>
<td>28</td>
<td>19.9</td>
<td>1.49</td>
<td>6.69</td>
</tr>
<tr>
<td>6</td>
<td>16/2/99</td>
<td>11:25</td>
<td>1.3</td>
<td>7</td>
<td>28</td>
<td>24.7</td>
<td>1.29</td>
<td>6.77</td>
</tr>
<tr>
<td>8</td>
<td>16/2/99</td>
<td>11:15</td>
<td>2</td>
<td>7</td>
<td>28</td>
<td>19.4</td>
<td>1.04</td>
<td>3.68</td>
</tr>
<tr>
<td>7</td>
<td>16/2/99</td>
<td>11:10</td>
<td>2.6</td>
<td>7</td>
<td>30.8</td>
<td>21.5</td>
<td>0.78</td>
<td>2.97</td>
</tr>
<tr>
<td>4</td>
<td>16/2/99</td>
<td>11:00</td>
<td>3.2</td>
<td>7</td>
<td>32.4</td>
<td>24.5</td>
<td>0.73</td>
<td>3.32</td>
</tr>
<tr>
<td>52</td>
<td>16/2/99</td>
<td>11:05</td>
<td>3.2</td>
<td>7</td>
<td>33.2</td>
<td>24.5</td>
<td>0.74</td>
<td>2.97</td>
</tr>
<tr>
<td>3</td>
<td>16/2/99</td>
<td>10:50</td>
<td>3.9</td>
<td>7</td>
<td>33.6</td>
<td>26</td>
<td>0.82</td>
<td>2.79</td>
</tr>
<tr>
<td>2</td>
<td>16/2/99</td>
<td>10:45</td>
<td>4.4</td>
<td>7</td>
<td>34.8</td>
<td>39.3</td>
<td>0.63</td>
<td>3.41</td>
</tr>
<tr>
<td>1</td>
<td>16/2/99</td>
<td>10:35</td>
<td>5.9</td>
<td>7</td>
<td>34.4</td>
<td>24.4</td>
<td>0.92</td>
<td>4.56</td>
</tr>
<tr>
<td>Hythe3</td>
<td>16/2/99</td>
<td>09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.45</td>
<td>26.96</td>
</tr>
</tbody>
</table>

1 Swanwick Marina 2 Hamble Point Marina 3 Hythe Marina, Southampton Water

ND : Not determined
APPENDIX C PARTITIONING DATA

Table C-1 Summary data for diuron partitioning experiments

<table>
<thead>
<tr>
<th>Sediment</th>
<th>1 g/l SS</th>
<th>20 g/l SS</th>
<th>200 g/l SS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Conc (ng/l)</td>
<td>Mean Final conc (ng/l)</td>
<td>Range (ng/l)</td>
</tr>
<tr>
<td>Arun</td>
<td>500</td>
<td>501</td>
<td>486-522</td>
</tr>
<tr>
<td>Bracklesham</td>
<td>500</td>
<td>449</td>
<td>437-460</td>
</tr>
<tr>
<td>Bosham</td>
<td>500</td>
<td>416</td>
<td>391-442</td>
</tr>
<tr>
<td>Chichester</td>
<td>500</td>
<td>502</td>
<td>469-563</td>
</tr>
<tr>
<td>Dell Quay</td>
<td>500</td>
<td>481</td>
<td>460-496</td>
</tr>
<tr>
<td>Pagham</td>
<td>500</td>
<td>441</td>
<td>416-460</td>
</tr>
</tbody>
</table>
Table C-2 Summary data for Irgarol 1051 partitioning experiments

<table>
<thead>
<tr>
<th>Sediment</th>
<th>1 g/l SS</th>
<th>20 g/l SS</th>
<th>200 g/l SS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Conc (ng/l)</td>
<td>Mean Final conc (ng/l)</td>
<td>Range (ng/l)</td>
</tr>
<tr>
<td></td>
<td>Initial Conc (ng/l)</td>
<td>Final conc (ng/l)</td>
<td>Range (ng/l)</td>
</tr>
<tr>
<td></td>
<td>Initial Conc (ng/l)</td>
<td>Final conc (ng/l)</td>
<td>Range (ng/l)</td>
</tr>
<tr>
<td>Arun</td>
<td>500 493 478-510 3.34</td>
<td>250 180 170-190 3.19</td>
<td>500 87 78-96 3.28</td>
</tr>
<tr>
<td>Bracklesham</td>
<td>500 472 457-482 4.89</td>
<td>250 238 228-247 3.39</td>
<td>500 425 414-435 3.10</td>
</tr>
<tr>
<td>Bosham</td>
<td>500 446 435-469 3.50</td>
<td>250 134 122-146 3.08</td>
<td>500 63 53-73 2.99</td>
</tr>
<tr>
<td>Chichester</td>
<td>500 495 485-510 3.37</td>
<td>250 193 170-216 3.34</td>
<td>500 229 188-270 2.74</td>
</tr>
<tr>
<td>Dell Quay</td>
<td>500 504 489-526 3.14</td>
<td>250 223 213-232 2.92</td>
<td>500 210 209-211 3.00</td>
</tr>
<tr>
<td>Pagham</td>
<td>500 458 435-482 3.91</td>
<td>250 185 170-200 3.24</td>
<td>500 113 94-132 3.24</td>
</tr>
</tbody>
</table>
APPENDIX D DESCRIPTION OF QWASI MODEL

<table>
<thead>
<tr>
<th>Process</th>
<th>Rates (mol/h)</th>
<th>D</th>
<th>B</th>
<th>B or D Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment Burial</td>
<td>$G_B C_S$</td>
<td>$G_B Z_S f_S$</td>
<td>$D_B f_S$</td>
<td>$D_B = G_B Z_S$, $B_B = J_B Z_S$</td>
</tr>
<tr>
<td>Sediment Transformation</td>
<td>$V_S C_S k_S$</td>
<td>$V_S Z_S k_S f_S$</td>
<td>$D_S f_S$</td>
<td>$D_S = V_S Z_S k_S$, $B_S = h_S Z_S k_S$</td>
</tr>
<tr>
<td>Sediment Resuspension</td>
<td>$G_R C_S$</td>
<td>$G_R Z_S f_S$</td>
<td>$D_R f_S$</td>
<td>$D_R = G_R Z_R$, $B_R = J_R Z_R$</td>
</tr>
<tr>
<td>Sediment-to Water Diffusion</td>
<td>$K_T A_S C_N$</td>
<td>$K_T A_S Z_W f_W$</td>
<td>$D_T f_W$</td>
<td>$D_T = K_T A_S Z_W$, $B_T = K_T Z_W$</td>
</tr>
<tr>
<td>Water-to-Sediment Diffusion</td>
<td>$K_T A_S C_W$</td>
<td>$K_T A_S Z_W f_W$</td>
<td>$D_T f_W$</td>
<td>$D_T = K_T A_S Z_W$, $B_T = K_T Z_W$</td>
</tr>
<tr>
<td>Water Transformation</td>
<td>$V_W C_W k_W$</td>
<td>$V_W Z_W k_W f_W$</td>
<td>$D_W f_W$</td>
<td>$D_W = V_W Z_W k_W$, $B_W = h_W Z_W k_W$</td>
</tr>
<tr>
<td>Water - to-Air Volatilisation</td>
<td>$K_V A_W C_W$</td>
<td>$K_V A_W Z_W f_W$</td>
<td>$D_V f_W$</td>
<td>$D_V = K_V A_W Z_W$, $B_V = K_V Z_V$</td>
</tr>
<tr>
<td>Water Outflow</td>
<td>$G_J C_W$</td>
<td>$G_J Z_W f_W$</td>
<td>$D_J f_W$</td>
<td>$D_J = G_J Z_W$</td>
</tr>
<tr>
<td>Suspended Sediment Outflow</td>
<td>$G_V C_P$</td>
<td>$G_V Z_P f_W$</td>
<td>$D_V f_W$</td>
<td>$D_V = G_V Z_P$</td>
</tr>
<tr>
<td>Air-to-Water Absorption</td>
<td>$K_V A_W P_A/H$</td>
<td>$K_V A_W Z_W f_W$</td>
<td>$D_V f_W$</td>
<td>$D_V = K_V A_W Z_W$, $B_V = K_V Z_W$</td>
</tr>
<tr>
<td>Air Particle Deposition</td>
<td>$G_D C_Q$</td>
<td>$G_D Z_Q f_A$</td>
<td>$D_D f_A$</td>
<td>$D_D = G_D Z_Q$, $B_D = J_D Z_Q$</td>
</tr>
<tr>
<td>Air Rain-Out</td>
<td>$G_M C_M$</td>
<td>$G_M Z_W f_A$</td>
<td>$D_M f_A$</td>
<td>$D_M = G_M Z_M$, $B_M = J_M Z_M$</td>
</tr>
<tr>
<td>Water Inflow</td>
<td>$G_I C_I$</td>
<td>$G_I Z_W f_I$</td>
<td>$D_I f_I$</td>
<td>$D_I = G_I Z_W$</td>
</tr>
<tr>
<td>Suspended Sediment Inflow</td>
<td>$G_X C_X$</td>
<td>$G_X Z_P f_I$</td>
<td>$D_X f_I$</td>
<td>$D_X = G_X Z_P$</td>
</tr>
</tbody>
</table>

$G_B = J_B A_S$, $G_R = J_A A_S$, $G_D = J_D A_S$, $G_Q = J_Q A_W$, $G_M = J_M A_W$
APPENDIX E MODEL VALIDATION DATA

Second Validation Exercise

Table D-1 Measured and predicted data for Southampton Water

<table>
<thead>
<tr>
<th>Sediment</th>
<th>Diuron</th>
<th>Irgarol 1051</th>
<th>Copper</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
<td>Predicted</td>
<td>Measured</td>
<td>Predicted</td>
</tr>
<tr>
<td>S1</td>
<td>1.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>S2</td>
<td>0.9</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>S3</td>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>M1</td>
<td>35</td>
<td>2.5</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>M2</td>
<td>44</td>
<td>3.3</td>
<td>103</td>
<td>103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
<th>Diuron</th>
<th>Irgarol 1051</th>
<th>Copper</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
<td>Predicted</td>
<td>Measured</td>
<td>Predicted</td>
</tr>
<tr>
<td>S1</td>
<td>1.7</td>
<td>37</td>
<td>4.7</td>
<td>10</td>
</tr>
<tr>
<td>S2</td>
<td>1.6</td>
<td>25</td>
<td>4.7</td>
<td>8</td>
</tr>
<tr>
<td>S3</td>
<td>1.2</td>
<td>15</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>M1</td>
<td>47</td>
<td>546</td>
<td>61</td>
<td>29</td>
</tr>
<tr>
<td>M2</td>
<td>101</td>
<td>911</td>
<td>1421</td>
<td>50</td>
</tr>
</tbody>
</table>

NB Units for diuron and Irgarol 1051 are ng/l for water and µg/kg for sediments

Units for copper and zinc are µg/l for water and mg/kg for sediments
Table D-2 Measured and predicted data for River Crouch

<table>
<thead>
<tr>
<th></th>
<th>Sediment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diuron</td>
<td>Irgarol 1051</td>
<td>Copper</td>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>Measured</td>
<td>Predicted</td>
<td>Measured</td>
<td>Predicted</td>
<td>Measured</td>
<td>Predicted</td>
<td>Measured</td>
<td>Predicted</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>2.8</td>
<td>0.4</td>
<td>20</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>1</td>
<td>0.2</td>
<td>11</td>
<td>77</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.3</td>
<td>0.1</td>
<td>7.5</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>26</td>
<td>2</td>
<td>62</td>
<td>118</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Diuron</td>
<td>Irgarol 1051</td>
<td>Copper</td>
<td>Zinc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>Measured</td>
<td>Predicted</td>
<td>Measured</td>
<td>Predicted</td>
<td>Measured</td>
<td>Predicted</td>
<td>Measured</td>
<td>Predicted</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>2.1</td>
<td>84</td>
<td>9.1</td>
<td>9.3</td>
<td>4.4</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>3.4</td>
<td>31</td>
<td>8.5</td>
<td>4.9</td>
<td>2.4</td>
<td>3</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0.6</td>
<td>7.2</td>
<td>1</td>
<td>2.4</td>
<td>1.1</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>117</td>
<td>546</td>
<td>15</td>
<td>29</td>
<td>1.4</td>
<td>7</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NB Units for diuron and Irgarol 1051 are ng/l for water and µg/kg for sediments

Units for copper and zinc are µg/l for water and mg/kg for sediments
Table D-3 Measured and predicted data for River Orwell

Sediment

<table>
<thead>
<tr>
<th>Site</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0</td>
<td>0</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>78</td>
<td>58</td>
<td>23</td>
<td>189</td>
<td>172</td>
<td>7.8</td>
</tr>
<tr>
<td>S2</td>
<td>0</td>
<td>0</td>
<td>2.8</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>39</td>
<td>33</td>
<td>20</td>
<td>140</td>
<td>116</td>
<td>7.9</td>
</tr>
<tr>
<td>S3</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>29</td>
<td>18</td>
<td>25</td>
<td>118</td>
<td>70</td>
<td>1.1</td>
</tr>
<tr>
<td>M1</td>
<td>22</td>
<td>362</td>
<td>7.8</td>
<td>0</td>
<td>85</td>
<td>0.6</td>
<td>172</td>
<td>119</td>
<td>14</td>
<td>270</td>
<td>119</td>
<td>4.1</td>
</tr>
<tr>
<td>M2</td>
<td>0</td>
<td>0</td>
<td>12.3</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>55</td>
<td>41</td>
<td>29</td>
<td>160</td>
<td>139</td>
<td>9.9</td>
</tr>
<tr>
<td>M3</td>
<td>161</td>
<td>71</td>
<td>9</td>
<td>48</td>
<td>88</td>
<td>0.9</td>
<td>198</td>
<td>84</td>
<td>131</td>
<td>291</td>
<td>205</td>
<td>48</td>
</tr>
</tbody>
</table>

Water

<table>
<thead>
<tr>
<th>Site</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>96</td>
<td>39</td>
<td>110</td>
<td>15</td>
<td>5</td>
<td>15.2</td>
<td>1.2</td>
<td>1.6</td>
<td>5.1</td>
<td>2.5</td>
<td>7.5</td>
<td>6</td>
</tr>
<tr>
<td>S2</td>
<td>46</td>
<td>21</td>
<td>81</td>
<td>13</td>
<td>5</td>
<td>14.8</td>
<td>1.2</td>
<td>1.2</td>
<td>4.3</td>
<td>1.6</td>
<td>5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>S3</td>
<td>13</td>
<td>16</td>
<td>70</td>
<td>9.7</td>
<td>7</td>
<td>14.3</td>
<td>1.1</td>
<td>0.8</td>
<td>3.9</td>
<td>1.3</td>
<td>3.9</td>
<td>4.8</td>
</tr>
<tr>
<td>M1</td>
<td>381</td>
<td>51</td>
<td>122</td>
<td>58</td>
<td>25</td>
<td>6.6</td>
<td>7.8</td>
<td>3.7</td>
<td>3</td>
<td>9.1</td>
<td>14.4</td>
<td>3.1</td>
</tr>
<tr>
<td>M2</td>
<td>117</td>
<td>22</td>
<td>255</td>
<td>24</td>
<td>4</td>
<td>13.7</td>
<td>2</td>
<td>1.7</td>
<td>14</td>
<td>2.7</td>
<td>6.1</td>
<td>6.5</td>
</tr>
<tr>
<td>M3</td>
<td>768</td>
<td>302</td>
<td>814</td>
<td>201</td>
<td>63</td>
<td>46.5</td>
<td>5.8</td>
<td>6.7</td>
<td>21.2</td>
<td>10.5</td>
<td>19.9</td>
<td>22</td>
</tr>
</tbody>
</table>

NB Units for diuron and Irgarol 1051 are ng/l for water and µg/kg for sediments
Units for copper and zinc are µg/l for water and mg/kg for sediments
<table>
<thead>
<tr>
<th>Site</th>
<th>Sediment</th>
<th>Summer</th>
<th>Winter</th>
<th>Predicted</th>
<th>Diuron</th>
<th>Irgarol 1051</th>
<th>Copper</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>24</td>
<td>2.6</td>
<td>66</td>
<td>57</td>
<td>132</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>16</td>
<td>1.3</td>
<td>69</td>
<td>42</td>
<td>68</td>
<td>175</td>
<td>127</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>9</td>
<td>0.7</td>
<td>27</td>
<td>45</td>
<td>49</td>
<td>88</td>
<td>132</td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td>45</td>
<td>2.5</td>
<td>92</td>
<td>98</td>
<td>63</td>
<td>191</td>
<td>207</td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>2.4</td>
<td>0.2</td>
<td>61</td>
<td>47</td>
<td>33</td>
<td>174</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Water</th>
<th>Summer</th>
<th>Winter</th>
<th>CEFAS</th>
<th>Diuron</th>
<th>Irgarol 1051</th>
<th>Copper</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>264</td>
<td>32</td>
<td>984</td>
<td>32</td>
<td>31</td>
<td>64</td>
<td>7.4</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>254</td>
<td>33</td>
<td>480</td>
<td>33</td>
<td>42</td>
<td>33</td>
<td>6.7</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>77</td>
<td>13</td>
<td>240</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>2.3</td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td>355</td>
<td>43</td>
<td>546</td>
<td>43</td>
<td>47</td>
<td>29</td>
<td>9.2</td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>275</td>
<td>61</td>
<td>219</td>
<td>61</td>
<td>22</td>
<td>12</td>
<td>7.5</td>
</tr>
</tbody>
</table>

NB Units for diuron and Irgarol 1051 are ng/l for water and µg/kg for sediments
Units for copper and zinc are µg/l for water and mg/kg for sediments
APPENDIX F REMA MODEL USER GUIDANCE

Demonstration of the antifouling model developed by WRC on behalf of HSE and the Environment Agency.

Description of the model

The REMA programme is a mathematical model for estimating the ‘Predicted Environmental Concentrations’ in marinas and estuaries of active ingredients of biocidal products used for antifouling treatment of boats.

The programme is based on a quantitative water air sediment interaction (QWASI) model employing the fugacity concept for environmental modelling developed by Professor Donald Mackay at Trent University. The QWASI model was developed and validated for selected UK locations using monitoring information for specific antifoulant substances.

The software development project was funded by HSE and the Environment Agency and implemented by WRC. The software was written in Visual Basic by Patrick and Associates.

The REMA screen

The REMA screen is separated into a number of regions as shown on the next page. At the top of the screen is the title bar, below this is the menu bar containing File User Risk Assessment Help menus. Under this is the tool bar containing buttons to create a project, load a project, save a project, run a project and output a project’s results. Within each screen are a number of buttons, fields, and check boxes with which the user can interact with the program.

At the bottom of the screen is the status bar which tells the user the present situation and setting of the program. To the right of the screen is the System Schematic, this shows the estuary model. Parts of the model are highlighted when data are being entered or edited in them.
Biocides data

Data for can be selected for an existing biocide, this data can be edited or new biocide data can be added. The data are edited in the Default Option field; this field may be blank if no biocides have been added by users.
Once a biocide has been selected pressing **Apply to Model** will close the dialogue box and the biocide selected entered into the model.

The Area of hull below the water line information is fixed, based on information collected during the validation of this model. The figures for the Proportion treated with biocide may be set by the user based on known or predicted biocide usage.
Applying an estuary

To use an estuary model click on the button. This will call up the Default Estuary Data dialogue box shown below.

Initially, the centre section of the box will be empty. Clicking on the down arrow on the Default Options field will call up a list of default estuaries, from which an estuary can be selected. When the estuary is chosen its parameters are shown in the centre section of the box. By clicking on Apply to Model the dialogue box will be closed and the Estuary data selected entered into the model and displayed on the screen as shown below.

The values for Concentration of biocide in receiving water and Concentration of biocide in river water can be changed based on predictions or measurement of the biocide in question. The No. of Leisure craft in Estuary and No. of Ships in Estuary can also be changed.
The four estuaries in the system data are based on data collected in the UK during the last 20 years. Each estuary is divided into three estuary segments each containing one marina. Each estuary segment has an inflow from a river, which itself may have a known concentration of the biocide, set by the user. The model then moves water and sediment between estuary segments and marinas according to the prevailing conditions in the estuary. Each marina has a water flow half time, representing the rate of water exchange between the Marina and adjoining Estuary segment. The whole model is shown in the schematic displayed below.
The individual estuary models can be summarised as: Estuary 1: A small estuary, that dries out. Estuary 2: A well mixed estuary, with a narrow mouth. Estuary 3: A well mixed estuary, with a wide mouth. Estuary 4: A large, complex estuary.

Selecting a marina/harbour model

The **Marina/Harbour Data** used is linked to the **River/Estuary Data**. Although the default model can be selected in this screen by pressing the defaults button, it will also change the values in the **River/Estuary Data** page.

Changing marina/harbour data

Once an Estuary has been selected the fields shown in black can be changed, those in grey are figures derived from the data given and cannot be changed by the user. Additionally, the name of the Marina/Harbour for Scenario being used cannot be changed by the user.

The **Marina/Harbour Sizes** data can be changed by the user if required, however, this data are based on real situations. The **Water flow half times** indicate the rate of interchange of water between the marina and its adjoining estuary segment. Values other than zero must be placed in the **Water flow half times** fields in order for the model to function correctly. The **Vessel Numbers** field defines the amount of boating/shipping activity in the Marina or Harbour.

![Table showing Marina/Harbour data](image)
Results - Running the model

Once the data has been entered the model may be run by clicking on the button on the tools bar. In single calculation mode the model should take a few seconds to run, at the end of this time the results will be given as shown overleaf. The results are shown in \(\mu \text{g/l} \) and in scientific notation where \(E \) represents exponential (times ten to the power). The results shown are for the concentrations of biocide in water and sediment in each of the marinas and estuary segments (no calculations are made for changes in the open sea segment as this is assumed to stay constant.)

Probabilistic Risk Assessment - Monte Carlo modelling

REMA has been developed with probabilistic risk assessment as an additional function. Probabilistic risk assessment allows the user to find the standard deviation and other statistical variations in the results due to uncertainty in the data used, using the Monte Carlo theory. In order to do this the computer generates a large data set of possible solutions to the model. To create each point in the data set the computer applies a random factor to the data to take into account the standard deviation for each datum and then runs the model. By repeating this process the data set slowly builds up into a number of different solutions to the model each using different set of data which have been derived using the standard deviations. Once the data set is produced the computer calculates the mean and standard deviations for each of the results and also allows the user to export the data set it has produced for further analysis. This data can then be examined for factors such as the 95 percentile, however, the maximum and minimum values produced by this method should not be used as the computer has been constrained to the amount of random variation it can apply to the data.
RESULTS OUTPUT

In order to define the type of output required use File > Print setup from the menu bar to call up the dialogue box shown below.

The dialogue box is in three parts. The first sets the Contents of the output file. The second sets the Destination. This gives a list of check box options (both Printer and Clipboard have been disabled in this application). The lower field in this section shows the path and filename to which the output will be sent, this can be changed by the user if required. Further information on these sections is given below

The third area contains the Send Data and Close buttons. Send Data will send the output data to the specified file immediately, Close put the requested setting in place for data to be sent later. Please note, data can only be sent once a model has been run.

Outputs from Single Calculations

Single calculations can be Output as Text files only. A summary can be obtained by clicking on the Brief Report box. Detailed reports can be obtained by pressing the Detailed Reports check box and pressing the options check boxes beneath it as required.

Outputs from Probabilistic Calculations

Results from probabilistic calculations can be output as Brief Reports in the Text File format or as a Special CSV Results File (Comma-separated values format) which can be read by spreadsheet packages. The CSV file contains the full dataset produced if Write input data to file was selected in the dialogue box then the Probabilistic input data will also be written to this file.
Writing outputs

The Output can be obtained in a number of ways from the Output Setup dialogue box by clicking on Send Data, from File > Print on the menu bar or by clicking on the button on the tool bar.

Viewing outputs

Text outputs can be viewed by clicking on the button on the Results page, this starts up the notepad program with the output file displayed. Other outputs can be viewed by opening them in an appropriate package.
APPENDIX G GWBASIC PROGRAM

The REMA (Regulatory Environmental Modelling of Antifoulant) software is based on a QWASI fugacity model which was initially programmed in GWBASIC. The QWASI model has been placed in user-friendly shell programmed in visual basic, but all of the key calculations are performed by the GWBASIC part of the software. This Appendix provides a flow diagram of the GWBASIC program routines (Figure F-1) and a full listing of the program source code.

Set computing variables

Set dimensions and properties of the estuarine system

Set water flows into segments and exchange rates

Input marina dimensions, submerged area of vessels and quantities of chemical discharged

Input antifoulant background quantities

Calculate water flow and exchange rates

Select antifoulant type

Input chemical type P properties

Adjust chemical properties

Calculate dimensionless partition coefficients

Calculation of Z and D values and response times
 Calculate equivalent Z values
 Calculate mass transfer coefficients
 Calculate emissions
 Calculate leaching from marinas and estuaries

Calculate inflow of water into estuary segments

Calculate process D values

Calculate response times

Select one or more print outs

Print system description, physical chemical properties and Z values

Print chemical quantity data

Print segments and marina dimensions, properties and D values

Calculate mass balance

Print concentrations, amounts and process rates

Calculate exchange processes

Print individual marina and segment mass balances

End or return to start

Type P = Organic antifoulants Type K = Non-volatile antifoulants

Figure F-1 GWBasic program
LISTING OF GWBASIC SOURCE CODE FOR THE QWASI MODEL – REMA

10 REM A Steady State Model of an Antifoulant Chemical Fate in a 3 Segment Air-Water-Sediment System, Based on the QWASI Fugacity Modelling Approach
20 REM For details see Chapter 8 of "Multimedia Environmental Models" by D. Mackay CRC Press/Lewis Publishers. 1991
30 REM SET COMPUTING VARIABLES
40 DIM P$(20),H$(25),Y(25,10),DP(15,15)
50 DIM GPM(4),GWM(4),VFPM(4),CSPM(4)
60 OPEN "output.txt" FOR OUTPUT AS #1
70 REM Nomenclature Conventions
80 N$(1)="Upstream Zone"
90 N$(2)="Middle Zone"
100 N$(3)="Downstream Zone"
110 N$(4)="Ultimate receiving water"
120 REM Identify processes
130 P$(1)="| Sediment burial |
140 P$(2)="| Sediment transformation |
150 P$(3)="| Sediment resuspension |
160 P$(4)="| Sediment-water diffusion |
170 P$(5)="| Sediment deposition |
180 P$(6)="| Water transformation |
190 P$(7)="| Water-air diffusion |
200 REM DIMENSIONS AND PROPERTIES OF THE ESTUARINE SYSTEM
210 REM Segment Dimensions
220 II=3:III=II+1 'number of segments
230 AW(1)=843000!: AW(2)=3879000!: AW(3)=5760000!: 'water areas m2
240 HW(1)=3.76 : HW(2)=2.27 : HW(3)=3.42 'water depths m
250 HS(1)=.08 : HS(2)=.05 : HS(3)=.03 'sediment active depths m
260 FOR I = 1 TO II
270 AAS(I)=AW(I) 'Sediment areas m2
280 VW(I)=AW(I)*HW(I) 'Water volume m3
290 VS(I)=AAS(I)*HS(I) 'Active sediment volumes m3
300 NEXT I
310 REM Phase densities (kg/L or g/cm3)
320 DENW=1 'Water
330 DENP(1)=1.8: DENP(2)=1.8: DENP(3)=1.8: DENP(4)=1.8 'Suspended particles
340 DENS(1)=2: DENS(2)=2: DENS(3)=2 'Sediment solids
350 ORGP(1)=.05 : ORGP(2)=.05 : ORGP(3)=.05 'Organic content of suspended particles
360 ORGS(1)=.02: ORGS(2)=.02: ORGS(3)=.02 'Organic content of sediment solids
370 REM Particle Concentrations
380 VFS(1)=.05: VFS(2)=.05: VFS(3)=.05 'Volume fraction sediment solids
390 VFSM(1)=.05: VFSM(2)=.05: VFSM(3)=.05 'Volume fraction sediment solids
400 CSP(1)=21!: CSP(2)=24!: CSP(3)=28!: CSP(4)=30 'Suspended solids conc in water g/m3 or mg/L
410 FOR I = 1 TO III
420 VFP(I)=CSP(I)/(DENP(I)*10^6) 'Vol fraction of susp particles
430 NEXT I
set all water exchanges to zero initially

Water inflow rates = rivers m³/h
Water exchange rates = m³/h
Particle deposition rates = g/m²/day
Particle resuspension rates = g/m²/day
Particle burial rates = g/m²/day

rates in m³/h

'marina areas
'sediment areas
'marina water depths (m)
'marina sediment depths (m)
'Suspended particles
'Sediment solids
' suspended solids mg/L
'sediment solids volume fractions
'water flow half times (h)
'sediment flow half times (h)
'organic carbon content of particles
'organic carbon content of sediment solids
'total submerged area of vessels in estuary (m²)
'total submerged area of vessels in marinas (m²)

'rates in m³/h

m³/h
GRM(I) = RES(I) * AASM(I) / 24 / DENS(I) / 1000000!
GJM(I) = VWM(I) * 0.693 / TFWM(I)
GYM(I) = GJM(I) * VFP(I)
NEXT I

REM INPUT ANTI-FOULANT BACKGROUND QUANTITIES
PRINT "Specify background data"
PRINT "Input discharge and background quantities, any previous values in parentheses ()"
FOR I = 1 TO II
PRINT "Background concentration in river input (g/m3 or mg/L) to segment "; I ; "("; CGI(I) ; ")": INPUT CGI(I)
NEXT I
PRINT "Background concentration (g/m3 or mg/L) in ultimate receiving water ("; CGI(III) ; ")": INPUT CGI(III)
ETGT = 0: ETT = 0: ETKT = 0
FOR I = 1 TO II
EWG(I) = CGI(I) * GI(I) ' g/h in inflow water
NEXT I
REM CALCULATE WATER FLOW AND EXCHANGE RATES
GW(1,2) = GI(1) + GW(2,1)
GW(2,3) = GI(2) + GW(3,2) + GW(1,2) - GW(2,1)
GW(3,4) = GI(3) + GW(4,3) + GW(2,3) - GW(3,2)
FOR I = 1 TO III
FOR J = 1 TO III
GP(I, J) = GW(I, J) * VFP(I)
NEXT J
NEXT I
REM Total water and particle outflows
FOR I = 1 TO II
GJT(I) = GW(I, 1) + GW(I, 2) + GW(I, 3) + GW(I, 4)
GYT(I) = GJT(I) * VFP(I)
NEXT I
REM INPUT OF BIOFOULANT PROPERTIES
PRINT "A steady state model of the fate of a chemical antifoulant in a 3 segment estuarine system"
PRINT "There are two methods of entering the antifoulant chemical properties:
Method P is to enter physical chemical properties (This method is normally applied to organic chemicals)
Method K is to enter partition coefficients (This method is normally applied to involatile chemicals such as metals)"
PRINT "Specify a chemical by entering one of the following
A chemical to be user-specified by method P 1
A chemical to be user-specified by method K 2
Please enter 1 or 2"
INPUT QQ
ON QQ GOTO 1240, 1570
REM INPUT TYPE P CHEMICAL PROPERTIES
PRINT "Chemical name (preferably in CAPITALS) ("; C$; ")": INPUT C$
PRINT "Temperature deg C ("; TC; ")": INPUT TC
PRINT "Melting point deg C (for liquids input system temp above) ("; TM; ")": INPUT TM
PRINT "Molecular weight g/mol ("; WM; ")": INPUT WM
PRINT "Water solubility g/m3 ("; SOLY; ")": INPUT SOLY
PRINT "Vapour pressure Pa ("; VP; ")": INPUT VP
PRINT "Log organic carbon-water partition coefficient KOC ("; LKOC; ")": INPUT LKOC
1330 PRINT "Biodegradation half life in sediment hours (";TDS1;")":INPUT TDS1
1340 PRINT "Photolysis half life in sediment hours (";TDS2;")":INPUT TDS2
1350 PRINT "Hydrolysis half life in sediment hours (";TDS3;")":INPUT TDS3
1360 PRINT "Biodegradation half life in water hours (";TDW1;")":INPUT TDW1
1370 PRINT "Photolysis half life in water hours (";TDW2;")":INPUT TDW2
1380 PRINT "Hydrolysis half life in water hours (";TDW3;")":INPUT TDW3
1390 PRINT "Leaching rate from vessel surfaces eg 10 ug/cm2.day (";EVESG;")":INPUT EVESG
1400 REM Adjust chemical properties
1410 TK = TC + 273 'temperature in degrees Kelvin
1420 TMK=TM+273
1430 R=8.314
1440 IF TMK<TK THEN FRAT=1 ELSE FRAT=EXP(6.79*(1-TMK/TK)) 'fugacity ratio
1450 VPL=VP/FRAT 'subcooled liquid vapour pressure
1460 SOLM = SOLY/WM 'solubility (mol/m^3)
1470 H = VP/SOLM 'Henry's Law constant (Pa m^3/mol)
1480 KOC = 10^LKOC 'organic carbon-water partition coefficient
1490 KDAW=H/R/TK 'dimensionless air-water partition coefficient
1500 FOR I=1 TO III
1510 KPPW(I)=KOC*ORGP(I)
1520 KPPWM(I)=KOC*ORGPM(I)
1530 KPSW(I)=KOC*ORGSI(I)
1540 KPSWM(I)=KOC*ORGSM(I)
1550 NEXT I
1560 GOTO 1790
1570 REM INPUT TYPE K CHEMICAL PROPERTIES
1580 PRINT "Input chemical properties, any previous values in parentheses ("

1590 PRINT "Chemical name (preferably in CAPITALS) (";C$;")":INPUT C$
1600 PRINT "Temperature deg C (";TC;")":INPUT TC
1610 PRINT "Molecular weight g/mol (";WM;")":INPUT WM
1620 PRINT "Partition coefficients are common to all segments"
1630 PRINT "Air-water partition coefficient KDAW (";KDAW;")":INPUT KDAW
1640 PRINT "Sediment-water partition coefficient KPSWC L/kg (";KPSWC;")":INPUT KPSWC
1650 PRINT "Particle-water partition coefficient KPPWC L/kg (";KPPWC;")":INPUT KPPWC
1660 PRINT "Biodegradation half life in sediment hours (";TDS1;")":INPUT TDS1
1670 PRINT "Photolysis half life in sediment hours (";TDS2;")":INPUT TDS2
1680 PRINT "Hydrolysis half life in sediment hours (";TDS3;")":INPUT TDS3
1690 PRINT "Biodegradation half life in water hours (";TDW1;")":INPUT TDW1
1700 PRINT "Photolysis half life in water hours (";TDW2;")":INPUT TDW2
1710 PRINT "Hydrolysis half life in water hours (";TDW3;")":INPUT TDW3
1720 PRINT "Leaching rate from vessel surfaces eg 10 ug/cm2.day (";EVESG;")":INPUT EVESG
1730 FOR I= 1 TO III
1740 KPSW(I)=KPSWC
1750 KPSWM(I)=KPSWC
1760 KPPW(I)=KPPWC
1770 KPPWM(I)=KPPWC
1780 NEXT I
REM CALCULATE DIMENSIONLESS PARTITION COEFFICIENTS
1800 FOR I=1 TO III
1810 KDPW(I)=KPPW(I)*DENP(I)
1820 KDPWM(I)=KPPWM(I)*DENP(I)
1830 KDSW(I)=KPSW(I)*DENS(I)
1840 KDSWM(I)=KPSWM(I)*DENS(I)
1850 NEXT I
1860 TK=TC+273
1870 R=8.314
1880 REM Reaction rate constants (h^-1) calculated from total half lives
1890 TDS=1/(1/TDS1+1/TDS2+1/TDS3)
1900 TDW=1/(1/TDW1+1/TDW2+1/TDW3)
1910 KS = .693/TDS 'total sediment reaction rate constant
1920 KW = .693/TDW 'total water reaction rate constant

REM CALCULATION OF Z AND D VALUES AND RESPONSE TIMES
1930 REM Calculate equivalent Z values
1940 ZW = 1 'Z for water
1950 ZA = KDAW 'Z for air
1960 FOR I= 1 TO III
1970 ZP(I) = KDPW(I) 'Z for water particles
1980 ZPM(I) = KDPWM(I) 'Z for water particles in marina
1990 ZS(I) = KDSW(I) 'Z for sediment particles
2000 ZSM(I) = KDSWM(I) 'Z for sediment particles in marina
2010 ZST(I)=ZW*(1-VFS(I))+ZS(I)*VFS(I) 'Z for bulk sediment
2020 ZSTM(I)=ZW*(1-VFSM(I))+ZSM(I)*VFSM(I) 'Z for bulk sediment in marina
2030 ZWT(I) = ZW*(1-VFP(I))+ZP(I)*VFP(I) 'Z for bulk water
2040 ZWTM(I) = ZW*(1-VFPM(I))+ZPM(I)*VFPM(I) 'Z for bulk water in marina
2050 NEXT I
2060 REM Mass Transfer Coefficients (m/h)
2070 KVA = 3! 'volatilization: air side
2080 KVW = .03 'volatilization: water side
2090 KV = 1/(1/KVW + 1/(KVA*KDAW)) 'overall water side 'sediment-water diffusion
2100 REM Calculate emissions
2110 ETGT=0:ETT=0:ETKT=0
2120 REM leaching rates from vessels in estuaries and marinas
2130 EVES=EVESG*.000001*10000!/24/WM 'leaching rate mol/m^2/h from ug/cm^2/day
2140 FOR I=1 TO II
2150 EVE(I)=EVES*AVESE(I) 'leaching rate from vessels in estuary mol/h
2160 EVM(I)=EVES*AVESM(I) 'leaching rate from vessels in marinas mol/h
2170 REM leaching rates from vessels in estuaries and marinas
2180 EVEG(I)=EVEG(I)*WM 'rate in g/h
2190 EVMG(I)=EVM(I)*WM 'rate in g/h
2200 EVEK(I)=EVEG(I)*8760/1000 'rate in kg/year
EVMK(I) = EVMG(I) * 8760/1000
'rate in kg/year

REM input rates by inflow in water to estuary segments
EWG(I) = CGI(I) * GI(I)
'g/h in inflow water
EW(I) = EWG(I) / WM
'mol/h in inflow water
EWK(I) = EWG(I) * 8760/1000
'kg/year in inflow water

REM total rates for each segment
ET(I) = EVE(I) + EVM(I) + EW(I)
ETG(I) = ET(I) * WM
ETK(I) = ETG(I) * 8760/1000

REM grand total rates
ETT = ETT + ET(I)
'mol/h
ETTG = ETT * WM
'g/h
ETTK = ETTG * 8760/1000
'kg/year

REM Calculation of process D values DP(I, J) and DPM(I, J) and response times

FOR I = 1 TO II
 DP(1, I) = GB(I) * ZS(I)
'burial
 DPM(1, I) = GBM(I) * ZSM(I)
'burial
 DP(2, I) = VS(I) * ZST(I) * KS
'sediment transformation
 DPM(2, I) = VSM(I) * ZSTM(I) * KS
'sediment transformation
 DP(3, I) = GR(I) * ZS(I)
'sediment resuspension
 DPM(3, I) = GRM(I) * ZSM(I)
'sediment resuspension
 DP(4, I) = KT * AAS(I) * ZW
'sediment-water diffusion
 DPM(4, I) = VWM(I) * ZWTM(I) * KW
'sediment-water diffusion
 DP(5, I) = GD(I) * ZP(I)
'sediment deposition
 DPM(5, I) = GDM(I) * ZPM(I)
'sediment deposition
 DP(6, I) = VW(I) * ZWT(I) * KW
'water transformation
 DPM(6, I) = VW(I) * ZWTM(I) * KW
'water transformation

FOR I = 1 TO III
 DJ(I, J) = GW(I, J) * ZW
'water flow
 DJM(I) = GJM(I) * ZW
'water flow
 DY(I, J) = GP(I, J) * ZP(I)
'particle flow
 DYM(I) = GYM(I) * ZPM(I)
'particle flow
 D(I, J) = DJ(I, J) + DY(I, J)
'total flow
 DM(I) = DJM(I) + DYM(I)
'total flow

FOR I = 1 TO II
 TYW(3, I) = VW(I) * ZWT(I) / DP(3, I)
 TYS(3, I) = VS(I) * ZST(I) / DP(3, I) / 8760
 TYS(4, I) = VS(I) * ZST(I) / DP(4, I) / 8760
 TYS(5, I) = VS(I) * ZST(I) / DP(5, I) / 8760
 TYS(7, I) = VS(I) * ZST(I) / DP(7, I) / 8760

NEXT J
NEXT I
NEXT I
NEXT I
NEXT I
NEXT I
NEXT I

REM Calculate response times in years
TYS(1, I) = VS(I) * ZST(I) / DP(1, I) / 8760
TYS(2, I) = VS(I) * ZST(I) / DP(2, I) / 8760
TYS(4, I) = VS(I) * ZST(I) / DP(4, I) / 8760
TYS(5, I) = VS(I) * ZST(I) / DP(5, I) / 8760
TYS(7, I) = VS(I) * ZST(I) / DP(7, I) / 8760
2700 \(TYW(6,I) = VW(I) \times ZWT(I) / DP(6,I) / 8760\)
2710 \(TYW(7,I) = VW(I) \times ZWT(I) / DP(7,I) / 8760\)
2720 NEXT I
2730 \(FW(III) = CGI(III) / WM / ZWT(III)\)
 'aquivalence in receiving water
2740 FOR I = 1 TO II
2750 \(FW(I) = CGI(I) / WM / ZWT(I)\)
2760 REM DE includes losses by reaction, burial and volatilization
2770 REM DT is DE plus advective losses
2780 \(DE(I) = DP(4,I) + DP(5,I) + DP(6,I) + DP(7,I) -\)
 \((DP(3,I) + DP(4,I)) \times (DP(4,I) + DP(5,I)) / (DP(1,I) + DP(2,I) + DP(3,I) + DP(4,I))\)
2790 \(DEM(I) = DPM(4,I) + DPM(5,I) + DPM(6,I) + DPM(7,I) -\)
 \((DPM(3,I) + DPM(4,I)) \times (DPM(4,I) + DPM(5,I)) / (DPM(1,I) + DPM(2,I) + DPM(3,I) + DPM(4,I))\)
2800 \(DT(I) = DE(I) + D(I,1) + D(I,2) + D(I,3) + D(I,4)\)
2810 DTM(I) = DEM(I) + DJM(I) + DYM(I)
2820 NEXT I
2830 REM PRINT-OUT OF INPUT DATA
2840 PRINT "Input printing requirements; zero for 'No', 1 for 'Yes'")
2850 PRINT "Physical-chemical properties, and Z values"
2860 INPUT P1
2870 PRINT "Chemical quantity data"
2880 INPUT P2
2890 PRINT "Segment and marina dimensions, properties, D values and response times"
2900 INPUT P3
2910 PRINT "Concentrations, amounts and process rates"
2920 INPUT P4
2930 PRINT "Individual marina and segment mass balances"
2940 INPUT P5
2950 PRINT#1, " "
2960 REM PRINT OUT SYSTEM DESCRIPTION
2970 " PRINT#1, "Estimated fate of ";C$; PRINT#1, ") in an estuarine system consisting of three segments or zones and marinas"
2980 PRINT#1, "Steady-state fate model in a series of three water, sediment segments"
2990 PRINT#1, ""
3000 IF P1=0 GOTO 3710
3010 PRINT#1, "Physical-chemical and Partitioning Properties of ";C$
3020 PRINT#1, "These are input data, some values may be zero"
3030 PRINT#1, " "
3040 PRINT#1, USING "| Temperature (deg C) | ";TC
3050 PRINT#1, USING "| Gas constant (J/mol K) | ";R
3060 PRINT#1, USING "| Molecular mass (g/mol) | ";WM
3070 PRINT#1, USING "| Melting point (deg C) (system temp. for liquids) | ";TM
3080 PRINT#1, USING "| Solubility (g/m3) | ";SOLY
3090 PRINT#1, USING "| Vapour pressure (Pa) | ";VP
3100 PRINT#1, USING "| Subcooled liquid vapour pressure (Pa) | ";VPL
3110 PRINT#1, USING "| Fugacity ratio | ";FRAT
3120 PRINT#1, USING "| Henry's Law constant (Pa m3/mol) | ";H
3130 PRINT#1, USING "| Air water partition coefficient (dim'less) | ";KDAW
Program to calculate various environmental properties and their partition coefficients. The program uses a series of PRINT statements to output values for different environmental properties. These include:

- Log organic carbon water partition coefficient (LKOC)
- Organic carbon-water partition coefficient (KOC)
- Water reaction half life by biodegradation (TDW1)
- Water reaction half life by photolysis (TDW2)
- Water reaction half life by hydrolysis (TDW3)
- Water reaction half life (total) (TDW)

For sediments, the program calculates:

- Sediment reaction half life by biodegradation (TDS1)
- Sediment reaction half life by photolysis (TDS2)
- Sediment reaction half life by hydrolysis (TDS3)
- Sediment reaction half life (total) (TDS)

Other properties include:

- Emission rate from vessel (ug/cm²/day) (EVESG)
- Sediment-water partition coefficient (KPSWC)
- Particle-water partition coefficient (KPPWC)
- Leaching rate from vessel subm area (ug/cm²/day) (EVESG)

The program also includes calculations for Z values common to all segments, as well as properties specific to each segment. Additionally, it calculates particle-water and sediment-water partition coefficients. The code snippet provided is a part of a larger program, and it includes a loop that iterates over different properties and segments to calculate and print the values.
3550 PRINT#1, " ---
3560 PRINT#1, "
3570 FOR I= 1 TO II
3590 NEXT I
3600 PRINT#1, " Marina Z Values which may be marina specific (Pa.m3/mol) "
3610 PRINT#1, " Property Marina No 1 2 3 "
3620 PRINT#1, " ---

3630 FOR J=1 TO 6
3640 PRINT#1, Y$(J);
3650 FOR I= 1 TO II
3660 PRINT#1, USING "##.##^^^^ |";Y(J,I);
3670 NEXT I
3680 NEXT J
3690 PRINT#1, " ---

3700 PRINT#1, "
3710 PRINT #1,CHR$(12)
3720 IF P2=0 GOTO 4240
3730 PRINT#1, " Chemical quantity data"
3740 PRINT#1, " ---
3750 PRINT#1, USING "| Conc in receivg water (g/m3)| ##.##^^^^ |";CGI(III)
3760 PRINT#1, USING "| Aquivalence in receivg water| ##.##^^^^ |";FW(III)
3770 PRINT#1, " ---
3780 PRINT #1,CHR$(12)
3790 H$(3)="| A-F input from vessels in marina g/h |
3800 H$(4)="| A-F input from vess in marina kg/year |
3810 H$(5)="| A-F input from vess in marina mol/h |
3820 H$(6)="| A-F input from vessels in estuary g/h |
3830 H$(7)="| A-F input from vess in estuary kg/year |
3840 H$(8)="| A-F input from vess in estuary mol/h |
3850 H$(9)="| River water flow m3/h |
3860 H$(10)="| River water concentration g/m3 |
3870 H$(11)="| River chemical input g/h |
3880 H$(12)="| River chemical input kg/year |
3890 H$(13)="| River chemical input mol/h |
3900 H$(14)="| Total input g/h |
3910 H$(15)="| Total input kg/year |
3920 H$(16)="| Total input mol/hour |
3930 H$(17)="| Approx river fugacity/aquiv |
3940 H$(18)="| Vessel area in marina m2 |
3950 H$(19)="| Vessel area in estuary m2 |
3960 FOR I= 1 TO II
3970 Y(3,I)=EVMG(I):Y(4,I)=EVMK(I):Y(5,I)=EVM(I)
3980 Y(6,I)=EVEG(I):Y(7,I)=EVEK(I):Y(8,I)=EVE(I)
3990 Y(9,I)=GI(I):Y(10,I)=CGI(I):Y(11,I)=EWG(I)
4000 Y(12,I)=EWK(I):Y(13,I)=EW(I):Y(14,I)=0:Y(15,I)=ETG(I)
4010 Y(16,I)=ETK(I):Y(17,I)=ET(I):Y(18,I)=0:Y(19,I)=FWI(I)
4020 Y(20,I)=AVESM(I):Y(21,I)=AVESE(I)
4030 NEXT I
4040 PRINT#1, " Discharges to marinas & segments 1 2 3 "

119
4090 PRINT#1, " ---
4100 FOR J = 3 TO 21
4110 PRINT#1, H$(J);
4120 FOR I=1 TO II
4130 PRINT#1, USING "##.##^^^^ |";Y(J,I);
4140 NEXT I
4150 PRINT#1, "
4160 NEXT J
4170 PRINT#1, " ---

4180 PRINT#1, "
4190 PRINT#1, " ---
4200 PRINT#1, USING "| Grand total mol/h | ##.##^^^^ |";ETT
4210 PRINT#1, USING "| Grand total g/h | ##.##^^^^ |";ETTG
4220 PRINT#1, USING "| Grand total kg/year | ##.##^^^^ |";ETTK
4230 PRINT#1, " ---

4240 IF P3=0 GOTO 6280
4250 REM Print out segment properties
4260 FOR I=1 TO II
4270 Y(1,I)=ORGP(I):Y(2,I)=ORGS(I):Y(3,I)=DENP(I):Y(4,I)=DENS(I):Y(5,I)=VFP(I)
4280 Y(6,I)=CSP(I):Y(7,I)=VFS(I)
4290 Y(8,I)=AW(I):Y(9,I)=AAS(I):Y(10,I)=VW(I):Y(11,I)=VS(I):Y(12,I)=HW(I):Y(13,I)=HS(I)
4300 Y(14,I)=GJT(I):Y(15,I)=GYT(I)
4310 NEXT I
4320 H$(1)="| Fraction OC in water column particles |"
4330 H$(2)="| Fraction OC in sediment particles |"
4340 H$(3)="| Density of particles in water (g/cm3) |"
4350 H$(4)="| Density of surficial sediment particles (g/cm3) |"
4360 H$(5)="| Volume fraction water particles |"
4370 H$(6)="| Concentration: water column particles (mg/L) |"
4380 H$(7)="| Volume fraction of solids in sediment |"
4390 H$(8)="| Water area (square metres) |"
4400 H$(9)="| Sediment area (square metres) |"
4410 H$(10)="| Water volume (cubic metres) |"
4420 H$(11)="| Sediment volume (cubic metres) |"
4430 H$(12)="| Mean water depth (metres) |"
4440 H$(13)="| Mean active sediment depth (metres) |"
4450 H$(14)="| Water inflow and outflow rate (m3/h) |"
4460 H$(15)="| Particle outflow rate (m3/h) |"
4470 PRINT#1, "
4480 PRINT#1, " Segment properties Segment No 1 2 3
4490 PRINT#1, " ---

4500 FOR J = 1 TO 15
4510 PRINT#1, H$(J);
4520 FOR I=1 TO II
4530 PRINT#1, USING "##.##^^^^ |";Y(J,I);
4540 NEXT I
4550 PRINT #1, "
4560 NEXT J
4570 PRINT#1, " ---

4580 REM Print out marina properties
4590 FOR I=1 TO II

120
```plaintext
Y(6,I)=CSPM(I): Y(7,I)=VSPM(I)
Y(8,I)=AWM(I): Y(9,I)=AASM(I): Y(10,I)=VWM(I): Y(11,I)=VSM(I): Y(12,I)=HWM(I): Y(13,I)=HSM(I)
Y(14,I)=GJM(I): Y(15,I)=GYM(I)
NEXT I
PRINT#1, " Marina properties Segment No 1 2 3 "
PRINT#1, " ---------------------------------------------------------------
FOR J= 1 TO 15
PRINT#1, H$(J); FOR I=1 TO II
PRINT#1, USING "##.##^^^^ |";Y(J,I);
NEXT I
NEXT J
PRINT#1, " ---------------------------------------------------------------
PRINT#1, CHR$(12)
PRINT#1, " Inter-segment D values (water) "
PRINT#1, " ---------------------------------------------------------------
FOR I=1 TO III
PRINT#1, USING "## |";I;
FOR J=1 TO III
PRINT#1, USING "##.##^^^^ |";DJ(I,J);
NEXT J
NEXT I
PRINT#1, " ---------------------------------------------------------------
PRINT#1, " Inter-segment D values (particles) "
PRINT#1, " Source Destination "
PRINT#1, " ---------------------------------------------------------------
FOR I=1 TO III
PRINT#1, USING "## |";I;
FOR J=1 TO III
PRINT#1, USING "##.##^^^^ |";DY(I,J);
NEXT J
NEXT I
PRINT#1, " ---------------------------------------------------------------
PRINT#1, " Inter-segment D values (total) "
PRINT#1, " Source Destination "
PRINT#1, " ---------------------------------------------------------------
FOR I=1 TO III
PRINT#1, USING "## |";I;
FOR J=1 TO III
PRINT#1, USING "##.##^^^^ |";D(I,J);
NEXT J
NEXT I
PRINT#1, " ---------------------------------------------------------------
```

122

5150 PRINT #1, " "
5160 PRINT #1, " "
5170 PRINT #1, " Sediment-water exchange processes"
5180 PRINT #1, " Property Segment No 1 2 3"
5190 PRINT #1, " ---"
5200 H$(1)="| Sediment deposition g/m2/day |
5210 H$(2)="| Sediment resuspension g/m2/day |
5220 H$(3)="| Sediment burial g/m2/day |
5230 H$(4)="| Sediment deposition m3/h |
5240 H$(5)="| Sediment resuspension m3/h |
5250 H$(6)="| Sediment burial m3/h |
5260 FOR I = 1 TO II
5270 Y(1,I)=DEP(I):Y(2,I)=RES(I):Y(3,I)=BUR(I)
5280 Y(4,I)=GD(I):Y(5,I)=GR(I):Y(6,I)=GB(I)
5290 NEXT I
5300 FOR J= 1 TO 6
5310 PRINT #1, H$(J);
5320 FOR I=1 TO II
5330 PRINT #1, USING "##.##^^^^ |";Y(J,I);
5340 NEXT I
5350 PRINT #1, " "
5360 NEXT J
5370 PRINT #1, " ---"
5380 PRINT #1, " "
5390 PRINT #1, " Mass Transfer Coefficients (m/h)"
5400 PRINT #1, " ---"
5410 PRINT #1, USING "| Volatilization: Air side | ##.##^^^^ |
5420 PRINT #1, USING "| Volatilization: Water side | ##.##^^^^ |
5430 PRINT #1, USING "| Overall water side | ##.##^^^^ |
5440 PRINT #1, USING "| Sediment-water diffusion | ##.##^^^^ |
5450 PRINT #1, " ---"
5460 PRINT #1, " "
5470 PRINT #1, CHR$(12)
5480 PRINT #1, " D Values for transport and transformation processes"
5490 PRINT #1, " Process Segment No 1 2 3"
5500 PRINT #1, " ---"
5510 FOR J= 1 TO 7
5520 PRINT #1, P$(J);
5530 FOR I =1 TO II
5540 PRINT #1, USING "##.##^^^^ |";DP(J,I);
5550 NEXT I
5560 PRINT #1, " "
5570 NEXT J
5580 PRINT #1, " ---"
5590 PRINT #1, "| Total D values DE(I)| |
5600 FOR I =1 TO II
5610 PRINT #1, USING "##.##^^^^ |";DE(I);
5620 NEXT I
5630 PRINT #1, " "
5640 PRINT #1, "| Total D value DT(I) | |
5650 FOR I =1 TO II
5660 PRINT #1, USING "##.##^^^^ |";DT(I);
5670 NEXT I

122
D Values for transport and transformation processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Marina No</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

```
FOR J = 1 TO 7
    PRINT#1, P$(J);
    FOR I =1 TO II
        PRINT#1, USING " ##.##^^^^ |";DPM(J,I);
    NEXT I
NEXT J
```

```
<table>
<thead>
<tr>
<th>Total D values DEM(I)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
```
FOR I =1 TO II
    PRINT#1, USING " ##.##^^^^ |";DEM(I);
NEXT I
```

```
<table>
<thead>
<tr>
<th>Total D value DTM(I)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
```
FOR I =1 TO II
    PRINT#1, USING " ##.##^^^^ |";DTM(I);
NEXT I
```

```
<table>
<thead>
<tr>
<th>Water outflow DJM(I)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
```
FOR I =1 TO II
    PRINT#1, USING " ##.##^^^^ |";DJM(I);
NEXT I
```

```
<table>
<thead>
<tr>
<th>Particle outflow DYM(I)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
```
FOR I =1 TO II
    PRINT#1, USING " ##.##^^^^ |";DYM(I);
NEXT I
```

Sediment response times in segments ie VZ/D (years)

```
FOR J= 1 TO 5
    PRINT#1, P$(J);
    FOR I= 1 TO II
        PRINT#1, USING " ##.##^^^^ |";TYS(J,I);
    NEXT I
NEXT J
```

```
Water response times in segments ie VZ/D (years)
```

```
FOR J = 3 TO 7
    PRINT#1, P$(J);
    FOR I= 1 TO II
        PRINT#1, USING " ##.##^^^^ |";TYW(J,I);
    NEXT I
NEXT I
```
REM MASS BALANCE CALCULATION

FOR I=1 TO II
 FWM(I)=EVM(I)/DTM(I)
 FSM(I)=FWM(I)*(DPM(4,I)+DPM(5,I))/(DPM(1,I)+DPM(2,I)+DPM(3,I)+DPM(4,I))
 RJYM(I)=FWM(I)*(DJM(I)+DYM(I))
 I(I)=EVE(I)+EW(I)+RJYM(I) 'inputs from vessels, water inflow and marinas
NEXT I

REM Calculate J and D groups, and solve steady state condition
J1=DT(1)
J2=DT(2)-D(1,2)*D(2,1)/J1
J3=DT(3)-D(2,3)*D(3,2)/J2
FW(3)=(I(3)+D(2,3)*(I(2)+I(1)*D(1,2)/J1))/J2+FW(4)*D(4,3))/J3
FW(2)=(I(2)+I(1)*D(1,2)/J1+FW(3)*D(3,2))/J2
FW(1)=(I(1)+D(2,1)*FW(2))/J1

FOR I = 1 TO II
 FS(I)=FW(I)*(DP(4,I)+DP(5,I))/(DP(1,I)+DP(2,I)+DP(3,I)+DP(4,I))
NEXT I

MTT=0:MTTK=0

FOR I =1 TO II
 CWT(I)=FW(I)*ZWT(I)
 CWTG(I)=CWT(I)*WM
 CST(I)=FS(I)*ZST(I)
 CSTG(I)=FS(I)*ZS(I)*WM/DENS(I)
 MWT(I)=FW(I)*VW(I)*ZWT(I)
 MWTK(I)=MWT(I)*WM/1000
 MST(I)=FS(I)*VS(I)*ZST(I)
 MSTK(I)=MST(I)*WM/1000
 MT(I)=MWT(I)+MST(I)
 MTK(I)=MT(I)*WM/1000
 CWTM(I)=FWM(I)*ZWTM(I)
 CWTGM(I)=CWTM(I)*WM
 CSTM(I)=FSM(I)*ZSTM(I)
 CSTGM(I)=FSM(I)*ZSM(I)*WM/DENSM(I)
 MWTM(I)=FWM(I)*VWM(I)*ZWTM(I)
 MWTKM(I)=MWTM(I)*WM/1000
 MSTK(I)=MSTM(I)*WM/1000
 MSTM(I)=MSTK(I)+MSTM(I)
 MTKM(I)=MTM(I)*WM/1000
 MTTM=MTTM+MTM(I):MTTKM=MTTKM+MTKM(I)
NEXT I

REM Calculate process rates
FOR I = 1 TO II
 R(J,I)=FS(I)*DP(J,I) :RK(J,I)=R(J,I)*WM*8760/1000
 RM(J,I)=FWM(I)*DPM(J,I) :RKM(J,I)=RM(J,I)*WM*8760/1000
NEXT J

FOR J = 1 TO 3
 R(J,I)=(FS(I)-FW(I))*DP(J,I) :RK(J,I)=R(J,I)*WM*8760/1000
 RM(J,I)=(FWM(I)-FWM(I))*DPM(J,I) :RKM(J,I)=RM(J,I)*WM*8760/1000
NEXT J

FOR J = 5 TO 6
 R(J,I)=FW(I)*DPM(J,I) :RK(J,I)=R(J,I)*WM*8760/1000
 RM(J,I)=FWM(I)*DPM(J,I) :RKM(J,I)=RM(J,I)*WM*8760/1000
NEXT J

NEXT I

REM Calculate process rates
FOR I = 1 TO II
 R(J,I)=FS(I)*DP(J,I) :RK(J,I)=R(J,I)*WM*8760/1000
 RM(J,I)=FWM(I)*DPM(J,I) :RKM(J,I)=RM(J,I)*WM*8760/1000
NEXT J
6830 R(7,I)=FW(I)*DP(7,I) : RK(7,I)=R(7,I)*WM*8760/1000
6840 RM(7,I)=FWM(I)*DPM(7,I) : RKM(7,I)=RM(7,I)*WM*8760/1000
6850 RSW(I)=FS(I)*(DP(3,I)+DP(4,I)) : RSWK(I)=RSW(I)*WM*8760/1000
6860 RWSM(I)=FWM(I)*(DPM(3,I)+DPM(5,I)) : RWSKM(I)=RWSM(I)*WM*8760/1000
6870 RWS(I)=FW(I)*(DP(4,I)+DP(5,I)) : RWSK(I)=RWS(I)*WM*8760/1000
6880 RWSM(I)=FWM(I)*(DPM(4,I)+DPM(5,I)) : RWSKM(I)=RWSM(I)*WM*8760/1000
6890 NEXT I
6900 FOR I = 1 TO III
6910 FOR J = 1 TO III
6920 R(JY(I,J))=D(I,J)*FW(I); R(JYK(I,J))=R(JY(I,J))*WM*8760/1000
6930 NEXT J
6940 NEXT I
6950 FOR I = 1 TO III
6960 RI(I)=0; RX(I)=0
6970 RIM(I)=0; RXM(I)=0
6980 FOR J= 1 TO III
6990 RX(I)=RX(I)+R(JY(I,J))
7000 RI(I)=RI(I)+R(JY(J,I))
7010 NEXT J
7020 RXK(I)=RX(I)*WM*8760/1000
7030 RIK(I)=RI(I)*WM*8760/1000
7040 RXM(I)=FWM(I)*DM(I)
7050 RIM(I)=EVM(I)
7060 RXKM(I)=RXM(I)*WM*8760/1000
7070 RIKM(I)=RIM(I)*WM*8760/1000
7080 NEXT I
7090 REM PRINT-OUT RESULTS
7100 IF P4=0 GOTO 8360
7110 PRINT#,1, " Concentrations and amounts in each segment"
7120 H$(1)=" Aquivalence in water column"
7130 H$(2)=" Aquivalence in sediment"
7140 H$(3)=" Concentration in bulk water (mol/m3)"
7150 H$(4)=" Concentration in bulk water (mg/L or g/m3)"
7160 H$(5)=" Concentration in bulk sediment (mol/m3)"
7170 H$(6)=" Concentration in sediment solids (ug/g)"
7180 H$(7)=" Amount in water column (mol)"
7190 H$(8)=" Amount in water column (kg)"
7200 H$(9)=" Amount in sediment (mol)"
7210 H$(10)=" Amount in sediment (kg)"
7220 H$(11)=" Total amount in segment (mol)"
7230 H$(12)=" Total amount in segment (kg)"
7240 FOR I= 1 TO II
7260 Y(6, I)=CSTG(I): Y(7, I)=MWT(I)
7270 Y(8, I)=MWTK(I): Y(9, I)=MST(I): Y(10, I)=MSTK(I): Y(11, I)=MT(I): Y(12, I)=MTK(I)
7280 NEXT I
7290 PRINT#,1, " Property Segment No 1 2 3"
7300 PRINT#,1, " --- "
7310 FOR J= 1 TO 12
7320 PRINT#,1, H$(J);
7330 FOR I=1 TO II
7340 PRINT#,1, USING "###.###|"; Y(J, I);
7350 NEXT I
7360 PRINT#,1, " "
7370 NEXT J
7380 PRINT#,1, " --- "
7390 PRINT#,1, ""
126

7400 PRINT#1, " Grand total mol ";MTT
7410 PRINT#1, " Grand total kg ";MTTK
7420 PRINT#1, " "
7430 PRINT#1, " Concentrations and amounts in each marina "
7440 H$(1)="Aquivalence in water column"
7450 H$(2)="Aquivalence in sediment"
7460 H$(3)="Concentration in bulk water (mol/m3)"
7470 H$(4)="Concentration in bulk water (mg/L or g/m3)"
7480 H$(5)="Concentration in bulk sediment (mol/m3)"
7490 H$(6)="Concentration in sediment solids (ug/g)"
7500 H$(7)="Amount in water column (mol)"
7510 H$(8)="Amount in water column (kg)"
7520 H$(9)="Amount in sediment (mol)"
7530 H$(10)="Amount in sediment (kg)"
7540 H$(11)="Total amount in segment (mol)"
7550 H$(12)="Total amount in segment (kg)"
7560 FOR I= 1 TO II
7580 Y(6,I)=CSTGM(I):Y(7,I)=MWTM(I)
7590 Y(8,I)=MWTKM(I):Y(9,I)=MSTM(I):Y(10,I)=MSTKM(I):Y(11,I)=MTM(I):Y(12,I)=MTKM(I)
7600 NEXT I
7610 PRINT#1, " Property Marina No 1 2 3 "
7620 PRINT#1, " ---
7630 FOR J= 1 TO 12
7640 PRINT#1, H$(J);" ";Y(J,I);
7650 FOR I=1 TO II
7660 PRINT#1, USING "##.##^^^^ |”;Y(J,I);
7670 NEXT I
7680 PRINT#1, " "
7690 NEXT J
7700 PRINT#1, " ---
7710 PRINT#1, " "
7720 PRINT#1, " Grand total mol ";MTTM
7730 PRINT#1, " Grand total kg ";MTTKM
7740 PRINT#1, " "
7750 PRINT#1, " "
7760 REM Print out transport and transformation rates for segments
7770 FOR I=1 TO II
7790 Y(6,I)=R(6,I):Y(7,I)=R(7,I):Y(8,I)=R(8,I)
7800 Y(9,I)=RK(1,I):Y(10,I)=RK(2,I):Y(11,I)=RK(3,I):Y(12,I)=RK(4,I):Y(13,I)=RK(5,I)
7810 Y(14,I)=RK(6,I):Y(15,I)=RK(7,I):Y(16,I)=RK(8,I)
7820 NEXT I
7830 PRINT#1, " "
7840 PRINT#1, " Process rates in Segments kg/year"
7850 PRINT#1, " Process Segment No 1 2 3 "
7860 PRINT#1, " ---
7870 FOR J= 1 TO 7
7880 PRINT#1, P$(J);
7890 FOR I=1 TO II
7900 PRINT#1, USING "##.##^^^^ |”;Y(J+8,I);
7910 NEXT I
7920 PRINT#1, " "

Vessel emissions

Evaporation

Water transformation

Water to sediment transfer

Sediment to water transfer

Sediment transformation

Sediment burial

Details of exchange processes

Volatilization

Sediment deposition

Sediment resuspension

(Net sediment to water diffuson)

Sediment to water diffuson

Water to sediment diffuson

Inflow from upstream segment

Inflow from downstream segment

Outflow to upstream segment

Outflow to downstream segment

Total input to water column

Total output from water column
PRINT#1, USING " Total input to sediment
###.###### #####.### ####.### ####.###";SUMSI, SUMSIK,SMMSI,SMMSIK
PRINT#1, USING " Total output from sediment
###.###### #####.### ####.### ####.###";SUMSX, SUMSXK,SMMSX,SMMSXK
PRINT#1, " "
PRINT#1, USING " Total amount in water mol and kg
###.###### #####.### ####.###";MWT(I),MWTK(I),MWTM(I),MWTKM(I)
PRINT#1, USING " Total amount in sediment mol and kg
###.###### #####.### ####.###";MST(I),MSTK(I),MSTM(I),MSTKM(I)
PRINT#1, " "
NEXT I
PRINT " If you wish to return to the start enter Y, to end enter N"
INPUT Y$
IF Y$="Y" OR Y$="y" GOTO 1100
END
MAIL ORDER
HSE priced and free publications are available from:
HSE Books
PO Box 1999
Sudbury
Suffolk CO10 2WA
Tel: 01787 881165
Fax: 01787 313995
Website: www.hsebooks.co.uk

RETAIL
HSE priced publications are available from booksellers

HEALTH AND SAFETY INFORMATION
HSE InfoLine
Tel: 08701 545500
Fax: 02920 859260
e-mail: hseinformationservices@natbrit.com
or write to:
HSE Information Services
Caerphilly Business Park
Caerphilly CF83 3GG

HSE website: www.hse.gov.uk

CRR 342
£20.00