Flexible Riser Integrity Management Experience West of Shetland

David Kaye
UK Industry Seminar, November 2008
Contents

• West of Shetland overview
• Integrity management experience
 – Bend stiffeners
 – Riser monitoring
 – Leak detection
 – Corrosion-fatigue
 – Marine growth
• Conclusions
West of Shetlands
Foinaven

- Located 190 km West of Shetland in 330 - 520 m water depth
- Petrojarl FPSO, operated by Teekay
- Startup 1997
- Oil export by shuttle tanker
- Gas export via 20” WOSPS to Sullom Voe
- 10 flexible risers
 - 4 off 9.1” production
 - 4 off 7.2” production/test
 - 1 off 7.5” gas lift/export
 - 1 off 10” water injection
Schiehallion

- Located 175 km West of Shetland in approx 400 m water depth
- Schiehallion FPSO
- Startup 1998
- Oil export by shuttle tanker
- Gas export via 20” WOSPS to Sullom Voe
- 15 flexible risers
 - 7 off 9.5” production
 - 3 off 7.4” production/test
 - 1 off 7.1” gas disposal/export
 - 1 off 7.4” gas lift/export
 - 2 off 9.5” water injection
 - 1 off 11” water injection
West of Shetlands Integrity Management

- BP operator of subsea system for both Foinaven and Schiehallion
- Significant attention to riser integrity since installation
 - Monitoring and inspection
 - Risk-based pipeline integrity management system, PIMS
 - BP Integrity Management Standard
- Key contractors
 - Aker Solutions = subsea engineering contractor
 - MCS = flexible riser engineering contractor
 - Technip = flexible risers, flowlines, jumpers
 - Wellstream = flexible flowlines, jumpers
 - Subsea7 = IRM contractor (Subsea Viking)
Schiehallion Bend Stiffeners

- Schiehallion bend stiffeners are large, two-part design
- Recent experience of slippage of inner bend stiffener

Bend stiffener connector

Outer bend stiffener

Inner bend stiffener

Riser
Schiehallion Bend Stiffeners

Stiffener Intact Partial Slippage Fully Slipped
Schiehallion Bend Stiffeners

- Bend stiffener change-outs performed 2007
 - 6 bend stiffeners replaced on existing risers
 - 1 bend stiffener installed with new riser

Recovered bend stiffeners

Replacement bend stiffeners
Riser Monitoring

- Riser Anchor Monitoring System (RAMS)
- Sonar system to monitor anchor system, risers and bend stiffeners
- Field trial Foinaven, July 2007
 - Sonar monitoring tool developed by SRD
 - Deployment system through spare I-tube
 - Deployment system developed by SP1
Riser Monitoring (RAMS)

Deployment system

RAMS screen display
Sheath Damage

- Sheath damage on both Foinaven and Schiehallion risers
- Annual monitoring through annulus vacuum testing
- Detection using fluorescent dye and laser leak detection
- Repair clamps developed for known breaches

- Example
 - Foinaven R10
 - Repair clamp installed 2007
Sheath Damage

- Example
 - Foinaven R2
 - Just below upper tether clamp
 - Repair clamp installed 2007
Corrosion-Fatigue

- Fatigue of armours is becoming more of a concern
 - Historical sheath damage leading to annulus flooding
 - Increasing H₂S levels
 - Fatigue criteria
- Key issues
 - Monitoring of annulus condition
 - Monitoring of process conditions
 - Protection of annulus
 - Flushing with inhibiting fluid
Corrosion-Fatigue

- Foinaven R8 riser case history
 - Pre-installed 1996
 - First operation 1997
 - Various sheath breaches identified and clamped between 1997-2003
 - Flushing with inhibitor fluid initiated in 1997
 - Approx. 95,000 litres flushing fluid consumed up to 2003
- Fatigue assessed at design and early 2000
- Fatigue reassessed in 2007/8 due to increasing fatigue concerns
Corrosion-Fatigue

- Clamp at -301 m, Oct 1997
- Clamp at -80 m, Sep 2003
- Clamp at seabed, May 2002
Corrosion-Fatigue

- Annulus environment
 - H₂S production increasing since 2002
 - Permeation calculations performed by Technip to determine H₂S concentration in annulus
 - Predicted annulus H₂S levels 7 mbar
Corrosion-Fatigue

- Fatigue testing
 - FI-09 SN curve data currently available for flushed (sweet) conditions
 - No data available for flushed (sour) conditions
 - Wire fatigue testing programme initiated for sour service conditions
 - Work performed by Marintek
 - Wire samples/dissection of representative stock
Corrosion-Fatigue

- One year fatigue assessment programme
 - SN curve derived from Marintek tests
 - Global riser analysis performed by MCS
 - Local fatigue analysis performed by Technip
 - Quantitative risk assessment performed by Marintek
- Conclusions:
 - Riser fatigue life was unacceptable for remaining field life
- Riser changed out with spare riser in 2008
- Foinaven dynamic umbilicals
 - As-built in black
 - As-found 2007
Marine Growth

Before cleaning

After cleaning
Marine Growth

• Specific marine growth
 – Particularly heavy (circa. 3000 kg/m³)
 – Significantly heavier than considered in design
 – No known industry experience of this type of problem on risers
 – Rapid (exponential) expansion of growth over last few years

• Current status
 – Extensive marine growth removal program resulted in re-floating
 – Outer sheath damage identified close to RGB touchdown (‘08 repair)
Conclusions

- Extensive operating experience West of Shetland
 - Foinaven field 11 years operation
 - Schiehallion field 10 years operation
 - More than 250 riser-years operation in both fields
- Key integrity management issues
 - Monitoring of bend stiffeners
 - Annulus monitoring to identify sheath damage
 - Monitoring of annulus to identify potential for corrosion-fatigue
 - Fatigue prediction and management