Waste & Recycling Sector Workplan 2017-18: Targeted Inspections

Open Government status

Open

Target audience

All FOD visiting staff and Specialist Inspectors (Occupational Hygiene, Mechanical, Noise and Vibration), Divisional Intelligence Officers, LA officers

Contents

Summary
Introduction
Action
DIOs
FOD Inspectors
Visiting Officers
Background
Organisation
Targeting & Timing
Recording and Reporting
Health and Safety
Diversity
Further References
Contacts
Appendix 1: Civic Amenity sites / Bring sites / Household Recycling Waste Centres
Appendix 2: Collections
Appendix 3: Composting
Appendix 4: Energy from Waste
Appendix 5: Material Recovery Facility (MRF)
Appendix 6: Mechanical Biological Treatment (MBT)
Appendix 7: Metal Recycling inc ELV
Appendix 8: National Lead Inspector Companies
Appendix 9: Skip Safety
Appendix 10: Waste Electrical & Electronic Equipment (WEEE)
Appendix 11: Waste Transfer Stations
Appendix 12: Initial Enforcement Expectations
Appendix 13: Examples of industry specific potential catastrophic events
Appendix 14: Visiting Officers Bioaerosols questionnaire

Summary

This outlines the 2017/18 FOD proactive inspection programme for waste and recycling activities to target the known causes of fatal and non-fatal injuries and ill health. This OG identifies key risks and initial enforcement expectations.
Introduction

The Waste & Recycling sector has one of the highest rates of workplace injury and work related ill-health of all the main industry sectors.

Over the last five years 2008/9 – 2015/16:-

- The fatal injury rate to workers was around 10 times the all industry average. The main causes of death include being struck by moving vehicles, contact with moving machinery and being trapped by something collapsing or overturning.

- 12 members of the public were killed as a result of work activity in the sector. This does not include Road Traffic Accidents which are not captured by RIDDOR.

- Annually around 5% of workers are injured in non-fatal workplace accidents, around double the average rate across all industries. Main causes of non-fatal injury include lifting and handling and slips, trips and falls.

- Annually around 5% of workers suffer an illness they believe to be work-related. Most common work-related health issues suffered include musculoskeletal disorders and stress, depression or anxiety, while other conditions include respiratory and skin disease.

Continued expansion, high rates of fatalities, potential significant health issues, concerns about collection activities and the direct and unavoidable public interface underpin its prioritisation.

Waste & recycling sites are controlled by an environmental permit system operated by the relevant environmental regulator - Environment Agency (EA) in England - Scottish Environment Protection Agency (SEPA) in Scotland; and - Natural Resources Wales (NRW) in Wales.

Sites are referred to as “permitted” or “non-permitted”. From a health and safety perspective this classification is immaterial, as all sites will have health and safety risks.

Information on key risks in core waste and recycling processes can be found within the appendices to this document. These appendices are arranged alphabetically solely for ease of reference.
Action

DIOs should:

For inspectors: Premises should be selected using the SIC codes and targeting information provided by HSE’s Waste & Recycling Team in conjunction with EA/NRW/SEPA intelligence, with sufficient visits planned for October – December 2017 (700 in total)

For Visiting Officers: Premises should be selected from the lists provided by HSE’s Waste & Recycling Team in conjunction with EA/NRW/SEPA intelligence, with sufficient visits planned for October – December 2017 (50 in total). Please note that not all teams will be required to undertake visits.

FOD inspectors should:

- ensure that they are familiar with the processes and equipment (and associated safety and health risks) that they are likely to encounter during an inspection of waste & recycling facilities.
- Where possible, make contact with the appropriate EA/NRW/SEPA officer to discuss the intended inspection. If practical, a joint inspection should be arranged. These have proven to be beneficial to both HSE and EA/NRW/SEPA over the last 12 months.
- The emphasis of inspection should be on the implementation of control measures.
- The SIC code recorded for the site must be checked and, if necessary, amended to ensure the visit and findings are correctly analysed for sector insight and future targeting. See Table in **Targeting & Timing**
- Inspectors must consider action in relation to Matters of Evident Concern (MEC) or Matters of Potential Major Concern at all visits (see OC18/12). Recent events, including multiple fatalities from a collapsed wall have reinforced the importance of taking action to prevent catastrophic events. OC18/12 explains the actions required and gives examples of the issues to consider that could lead to catastrophic events. Appendix 13 gives further examples of industry specific issues and includes links to appropriate guidance.
- If necessary, after dealing with immediate matters, further visits must be made to complete the inspection of key risks.

FOD Visiting Officers should:

- Familiarise themselves with the bioaerosols questionnaire, a copy of which can be found in Appendix 14.
- Visit allocated sites and complete the questionnaire with the dutyholder.
• Understand that the purpose of the visit is to gather information on how the waste and recycling industry understands the risks associated with bioaerosols, to assist with targeting visits in 2018/19.
• Coin cases should be set up as
 o Category – Advice/Education/Promotion
 o Speciality/Type – VO Waste Visit
 o Detail – 2017 – 18
• Scan and attach the questionnaire to the COIN Case and include any additional information on the COIN note, not captured by the questionnaire
• As with all other visits, if a matter of evident concern is noted, it should be referred to an Inspector.

Background

The main causes of fatalities include workplace transport and machinery issues (lack of guarding and isolation).

Inspectors should give priority to minimising the risk by use of physical control measures over accepting “systems of work”.

Further details on the risks and indicative IEE are contained in Appendix 12.

Organisation

Targeting & Timing

• 700 inspections in Quarter 3
• All waste & recycling premises are included regardless of size or ownership.
• The appendices for specific industry sectors contain guidance on the areas to target during inspection.
• If local intelligence supports – PLI visits and IFI can be undertaken regardless of the 3 year criteria.
• Local Authority waste collection inspections should only be undertaken as PLI or IFI – not as HRS inspections.
• Only premises within the following SICs are to be selected as Higher Risk Sector visits, if not inspected within the last 3 years.

<table>
<thead>
<tr>
<th>SIC Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 38110 | Civic Amenity Sites
Collection of waste from households, business and street bins
Skip Hire
Waste transfer Stations – Non-hazardous waste |
| 38210 | AD sites |
Composting Sites
Energy from Waste sites
Landfill sites

<table>
<thead>
<tr>
<th>38220</th>
<th>WEEE sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB all other HAZARDOUS waste sites and collections are inspected by CEMHD</td>
</tr>
</tbody>
</table>

| 38310 | Dismantling of wrecks of any type eg vehicles, ships, computers
|-------| Excludes dismantling to re-sell usable parts (46770) |

| 38320 | End of Life Vehicles
|-------| Recycling sites (not integrated into manufacturing premises)
| | MRFs
| | Eg premises that mechanically (eg crushing / shredding / baling) or chemically transform the material into a secondary raw material and those that separate out recyclable material from general waste. |

| 39000 | Other waste management
|-------| Please try to use a specific SIC rather than this catch all generic SIC |

| 46770 | Second hand car parts removed and sold |

Recording and Reporting

Inspections should be recorded in accordance with current work recording instructions. The additional instructions below will assist with accurate and consistent recording.

The following ‘risk areas’ in DO IT must be used:

<table>
<thead>
<tr>
<th>Topic</th>
<th>DO IT risk area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery Safety</td>
<td>Plant & Equipment</td>
</tr>
<tr>
<td>Transport</td>
<td>Workplace Transport</td>
</tr>
<tr>
<td>MSD</td>
<td>MSD</td>
</tr>
<tr>
<td>Asbestos / RCF</td>
<td>Carcinogen</td>
</tr>
</tbody>
</table>

The record should also include findings/comments about:

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Inspectors who encounter catalytic converter recycling should also inform HSE’s Waste and Recycling team with details of their visit via email (wasteandrecycling@hse.gov.uk).

Answers to the six questions should be recorded in the text area of the appropriate ‘risk area’ under DO IT (as above). The following structure should be used (including the question number):

Q1: [answer]
Q2: [answer]
Q3: [answer]
Q4: [answer]
Q5: [answer]
Q6: [answer]

Answers should be kept short and succinct whilst including sufficient information to give a clear understanding of the issues and actions taken. If comment on any question cannot be provided, please give a brief explanation of the reasons why not.

Health and Safety
The inspection of waste & recycling sites does not automatically necessitate the need for additional health and safety precautions e.g. two person inspections.

However when planning any visit inspectors (and their line managers) should ensure they are familiar with the mandatory precautions which all visiting staff must consider when undertaking HSE business outside of HSE premises or their official office – details of which can be found here.

Inspectors are particularly reminded of the need to wear appropriate safety footwear (ankle support, mid-sole protection, steel toe caps) and a high visibility tabard or jacket. Other PPE maybe required dependent on site rules / conditions e.g. eye protection, hearing protection and hard hat.

Diversity
Be aware there may be workers employed whose first language is not English or may have poor literacy skills. There may also be vulnerable workers at sites. Further guidance at http://www.hse.gov.uk/foi/internalops/og/og-0087.pdf

Further References
https://wishforum.org.uk/

http://www.hse.gov.uk/waste/index.htm

Sign up for the waste & recycling ebulletin here to be kept informed of latest developments
Contacts
wasteandrecycling@hse.gov.uk
Appendices

Appendix 1: Civic Amenity Sites / Bring sites / Household Recycling Waste Centres

Introduction

A civic amenity site (CA site) or household waste recycling centre (HWRC) is a facility where the public can dispose of household waste and also often containing recycling points. Civic amenity sites are usually owned by the local authority but maybe contracted out and operated by a private company. Bring Sites are bottle, clothing and paper banks found in public places eg supermarket car parks.

Health and safety

Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket
Be aware of risks whilst working in close proximity to vehicles
Ensure good personal hygiene and wash hands on leaving site

Inspection

Establish the contractual arrangements for the operation and management of the site to allocate responsibilities to the correct duty holder.

Identify and record the following information on your inspection case.

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Transport

Safe site

- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated sharply?
- Are vehicles suitably segregated from pedestrians, including members of the public?
- Has the positioning of skips/containers been considered with a view to eliminating blind corners? If not, have mirrors etc. been introduced to improve a driver's view of obscured areas?
- Are there physical control measures to prevent access by members of the public to the area during collection of full skips/containers?
- Are skips/containers clearly marked to reduce risk of late adjustments and reversing by visiting members of the public?

Safe vehicles

- Are all vehicles fit for use and suitable for the activities they are performing?
- Are all brakes, lights, mirrors, horns etc. suitably maintained?
- Have reversing alarms/beacons been fitted?
- Have all lifting equipment and accessories been thoroughly examined?

Safe drivers

- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for visiting drivers, especially members of the public?
- Are visiting drivers supervised and monitored whilst on site?

Slips/Trips

- Is the ground stable and even around skips / receptacles?
- Are there systems to monitor overflow / waste left outside receptacles (unattended sites)?
- Are there systems for the immediate clear up of spills?

Musculoskeletal Risks (MSDs)
- Have the risks associated with manual handling activities been suitably assessed?
- How much manual handling is being performed?
- Are there opportunities to use mechanical aids to replace manual handling?
- Are workers appropriately trained?
- Are workers expected to assist members of the public?

Work at Height
- Has suitable edge protection barriers at waist height (similar to scaffolding edge protection) been provided?
- Are there systems to ensure skips are loaded evenly and prevent overfilling of skips?
- Where trimming of the load is necessary, are they raking with plant buckets or plant fitted with compaction devices or other tools?
- What are the systems to prevent entering skips to retrieve contaminants or valuable items, eg by: Intercepting them before they enter the skip, or providing ‘retrieval tools/poles’?

Asbestos
- Are workers suitably trained to identify asbestos waste?
- Are there appropriate arrangements to deal with unexpected asbestos waste?

Guidance

<table>
<thead>
<tr>
<th>Waste 03</th>
<th>Orphaned gas cylinders in the waste & recycling industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste 09</td>
<td>Safe transport at waste and recycling sites</td>
</tr>
<tr>
<td>Waste 11</td>
<td>Safety at Bring Sites</td>
</tr>
<tr>
<td>Waste 26</td>
<td>Managing health and safety at Civic Amenity Sites</td>
</tr>
</tbody>
</table>

Inspections at waste transfer stations handling [asbestos waste](#)

Contacts

wasteandrecycling@hse.gov.uk
Appendix 2: Collections

Introduction / Description / Background

Generally, it is the local authority that has responsibility for municipal waste and recycling collections. The collection service may be provided directly by the local authority, contracted to a private contractor or undertaken by an arm’s length in-house contractor (sometimes referred to as a TECKAL company).

Some Local Authorities operate a “waste partnership” – i.e. LAS work in partnership to create shared services. This sometimes occurs when there is a two tier system (County and District) e.g. where the local authorities collect the waste and the counties are the waste disposal authority. More often though it is a group of neighbouring authorities working together to reduce costs (fleet savings, management etc).

There are many factors to consider when selecting the most appropriate collection/transfer/treatment systems for waste and recyclables. Comprehensive risk assessment is essential to ensure that services are delivered with risks controlled so far as is reasonably practicable.

When assessing the risks and evaluating the various options available it is essential that all hazards are identified and evaluated (e.g. Musculoskeletal injury, cuts, slips and trips, transport etc).

Any assessment process may also need to consider the hazards and level of risk presented across the entire process, from collection to final re-use/recycling/disposal. This may allow the consequential effects of each step in the process to be accounted for. For example a particular collection system may result in greater/less manual handling in subsequent processes.

"Waste and recyclables health and safety final report incorporating Risk Comparator Tool user guide" RSU/RA/07/01 http://www.hse.gov.uk/research/rhtm/rr609.htm provides a means for local authorities and others to compare the level of risk from different waste and recyclables management systems.

Health and safety

Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket
Be aware of risks whilst working in close proximity to working vehicles and road traffic.
Ensure good personal hygiene and wash hands on leaving site / completing inspection.

Inspection

Establish contractual arrangement and responsibilities between Local Authorities and/or Contractors.

Understand the policy and procedures utilised from discussion with management / supervisors / workers / employee representatives.

Assess the policy and procedures by shadowing collection rounds and speaking to the employees

The WISH Waste 03 Information sheet on Monitoring can be used as aide memoire.

Identify and record the following information on your inspection case.

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Transport

Route Risk Assessments

- Route risk assessments must be in place, clearly communicated and followed.
- Does the assessment consider times of day, traffic flow, schools, type of vehicle, size of vehicle, position of receptacles been considered?
- Has reversing been eliminated / minimised in the assessment?
Is there a mechanism for reviewing and reporting back issues with the assessment?
Is there an example where assessments have been updated?

Safe vehicles
- Are all vehicles fit for use and suitable for the activities they are performing in accordance with the route risk assessment?
- Have health issues (e.g., MSD, noise) and safety risks (size of vehicles required to reach households) been considered during procurement?
- Are daily checks of the vehicle undertaken and recorded?
- How are defects actioned / which ones are safety critical?
- Have reversing alarms/beacons been fitted?
- Have all lifting equipment and accessories been thoroughly examined?

Safe drivers
- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for agency / temporary drivers?
- How is the route risk assessment communicated to drivers?

Machinery safety
- Do workers understand the safe operation of lifting equipment eg emergency stops, safe loading?

Musculoskeletal Risks (MSDs)
- Have the risks associated with manual handling activities been suitably assessed? NB there is no restriction on moving 2 wheelie bins at a time if risk has been assessed appropriately (dynamic risk assessment)
- Has an assessment determined the suitable receptacle for the resident in conjunction with housing type, manual handling and vehicle?
- Has an assessment determined the suitable receptacle for the resident in conjunction with housing type, manual handling and vehicle?
- How much manual handling is being performed?
- Are there opportunities to use mechanical aids to replace manual handling?
- Are workers appropriately trained?

Monitoring
- How does the Local Authority monitor the contractors or shared arrangements?

Noise
Noise is an issue for kerbside collection of glass. HSE’s Waste & Recycling team is currently working with manufacturers and procurers to reduce the risk from noise by design measures. This does not negate the need for employers to assess the risks and implement control measures.

Guidance
- WISH Waste 03 Information sheet - Effective Proactive Monitoring in Waste and Recycling Collection Activities
- Waste 04 (Under revision) – Waste and Recycling Vehicles in Street Collection
- Waste 05 (Under revision) – Safe use of Refuse Collection Vehicle hoists and bins
- Waste 16 – Reducing noise risks from “kerbside” glass collection
- Waste 23 – Safe Waste and Recycling Collection Services

Contacts
wasteandrecycling@hse.gov.uk
Appendix 3: Composting

Introduction

Composting is the recycling of organic wastes such as vegetation and food waste to primarily produce fertiliser. Micro-organisms (fungal/mould spores such as the fungus Aspergillus fumigatus and certain types of bacteria called actinomycetes) are encouraged to grow to break down the organic waste - a process that also results in a very large numbers of these micro-organisms being present. Any handling of the material that generates dust will create a bioaerosol (micro-organisms made airborne).

Commercial scale composting is performed either in open windrows (long heaps of composting material) or in-vessel systems (where the composting material is enclosed; a requirement for treating material containing animal waste). To encourage efficient composting, the material has to be well aerated. Aeration of open windrows is achieved by regular turning of the material, which will create bioaerosols. In-vessel systems usually have forced air ventilation which is less likely to create bioaerosols. However, at the end of either process often the compost is screened (sieved) to produce a quality soil supplement and this could create bioaerosols.

Health and Safety

- Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket
- Be aware of risks whilst working in close proximity to working vehicles.
- Ensure good personal hygiene and wash hands on leaving site
- Do not stand in close proximity to jet washing/high pressure hosing, which could release bioaerosols into the air.

Inspection

Inspectors should identify and record the following information on your inspection case.

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Machinery

- Has access to all dangerous parts of the machine been eliminated or restricted sfarp?
- Is guarding fixed or interlocked (if access required)?
- Are all in-running nips on conveyors guarded (safe by position for operation does not mean safe by position for maintenance?)
- Is there a daily / pre-shift guard check system in place?
- How are machines maintained and/or cleaned?
- How are blockages removed from machines?
- Can the machine be isolated and locked off (e.g. personal padlocks, multi-clasp locks)?
- Have all operators been suitably trained in the use of the machine they are operating?
- Have risk assessments considered engineering/maintenance activities?

Transport

Safe site

- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated sfarp?
- Are vehicles suitably segregated from pedestrians?
- Has the positioning of skips/containers been considered with a view to eliminating blind corners? If not, have mirrors etc. been introduced to improve a driver’s view of obscured areas?
- Are there physical control measures to prevent access to area during collection of full skips/containers?

Safe vehicles

- Are all vehicles fit for use and suitable for the activities they are performing?
Are all brakes, lights, mirrors, horns etc. suitably maintained?
Have reversing alarms/beacons been fitted?
Have all lifting equipment and accessories been thoroughly examined?

Safe drivers
- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for visiting drivers?
- Are visiting drivers supervised and monitored whilst on site?

Bioaerosols
- Is the dutyholder aware of any risks associated with bioaerosols?
- Has the increased risk of bioaerosol generation during cleaning/maintenance been considered? If an issue, have tasks been modified (e.g. pressure hosing or dry sweeping) to eliminate or reduce the recirculation of bioaerosols into the environment in which people are working?
- If employees are unavoidably exposed to bioaerosols, has the appropriate RPE and PPE been provided (e.g. FFP3 or air-fed masks)?

Musculoskeletal Risks (MSDs)
- Have the risks associated with manual handling activities been suitably assessed?
- How much manual handling is being performed?
- Are there opportunities to use mechanical aids to replace manual handling?
- Are workers appropriately trained?

Guidance
HSE webpage “Composting - Recycling biodegradable waste” http://www.hse.gov.uk/waste/composting.htm

WISH Info 02 - Practical advice on lock-off recycling/recovery machinery
Waste 09 - Safe transport at waste and recycling sites
Waste 27 - Health and hazardous substances in waste and recycling

NB: HSE research on bioaerosols due for publication in 2017

Contacts
wasteandrecycling@hse.gov.uk
Appendix 4: Energy from Waste (including Anaerobic Digestion)

Introduction

Energy-from-waste (EfW) is a process of generating energy in the form of electricity and/or heat from the primary treatment of waste, usually through incineration (combustion of organic waste material). Energy can be recovered from a range of organic feedstocks (biomass) making it an attractive prospect, as at the same time as diverting waste material from landfill it provides economic and environmental benefits.

Biomass is a generic term for forestry and plant material, agricultural crops, food and garden waste and the biodegradable or combustible fractions of municipal waste. It can be used as a fuel or an energy source. Sources of biomass include specifically grown crops such as oil seed rape, agricultural by-products, waste wood, animal waste such as slurry, food processing waste and biodegradable or combustible fractions of municipal waste.

All biomass energy generation technologies require the feedstock material to be pre-processed into a suitable form e.g. sorted, shredded, pulped or pelleted etc. depending on the needs of the particular process. A wide range of solid biomass crops, agricultural and industrial waste can be turned into wood chips, fuel pellets or briquettes for use as energy feedstocks.

Anaerobic Digestion (AD) refers to a natural biological process which converts organic matter such as commercial and household food waste, garden waste and farm slurry, into energy. There are two main types of AD called thermophilic and mesophilic (the primary difference between them being that thermophilic processes reach temperatures of up to 60°C and mesophilic normally runs at about 35-40°C). The main products resulting from AD are biogas (a mixture of mainly methane and carbon dioxide), which is similar to natural gas, and digestate (liquid and solid fractions). The biogas can be used to generate surplus heat and electricity, or compressed for use as a biofuel. The material left over at the end of the process (digestate) is rich in nutrients and it can be used on land as fertiliser or soil improver (liquid fraction) or further processed in composting operations (solid fraction). This is a very diverse sector with multiple technologies being developed on a range of scales, from the small scale farm processing animal manure through to large industrial scale premises processing sewage sludge, and municipal waste.

Health and safety

Ensure appropriate PPE is worn - e.g. safety footwear & hi viz jacket
Be aware of risks whilst working in close proximity to working vehicles.
Ensure good personal hygiene and wash hands on leaving site.

Inspection

Due to the technical nature of the processes and the composition of the feedstock there are a number of additional hazards associated with these processes e.g. process safety and explosion risks. As such Inspectors may need to seek assistance from their local Process Safety Specialist Inspectors.

Identify and record the following information on your inspection case.

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Transport

Safe site

- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated stap?
- Are vehicles suitably segregated from pedestrians?
- Have blind corners been eliminated? If not, have mirrors etc. been introduced to improve a driver’s view of obscured areas?
- Are physical control measures in place to restrict access during collection activities?

Safe vehicles

- Are all vehicles fit for use and suitable for the activities they are performing?
- Are all brakes, lights, mirrors, horns etc. suitably maintained?
- Have reversing alarms/beacons been fitted?
- Have all lifting equipment and accessories been thoroughly examined?

Safe drivers
- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for visiting drivers?
- Are visiting drivers supervised and monitored whilst on site?

Machinery
- Has access to all dangerous parts of the machine been eliminated or restricted safely?
- Is guarding fixed or interlocked (if access required)?
- Are all in-running nips on conveyors guarded (safe by position for operation does not mean safe by position for maintenance)?
- Is there a daily / pre-shift guard check system in place?
- How are machines maintained and/or cleaned?
- How are blockages removed from machines?
- Can the machine be isolated and locked off (e.g. maintenance or clearing blockages)?
- Are there the means to lock off eg personal padlocks, multiclap locks?
- Have all operators been suitably trained in the use of the machine they are operating?
- Have risk assessments considered engineering/maintenance activities?

DSEAR
- Has a suitable and sufficient DSEAR assessment been undertaken? e.g.:
 - have the risks arising from dangerous substances been removed or suitably controlled?
 - have any areas of the workplace where explosive atmospheres may occur been identified and classified, and measures taken to avoid ignition sources (e.g. from unprotected equipment) in those areas?
 - have plans and procedures been developed to deal with accidents, incidents and emergencies involving dangerous substances, and cascaded to staff?

Bioaerosols
- Is the dutyholder aware of any risks associated with bioaerosols?
- Has the increased risk of bioaerosol generation during cleaning/maintenance been considered? If an issue, have tasks been modified (e.g. pressure hosing or dry sweeping) to eliminate or reduce the recirculation of bioaerosols into the environment in which people are working?
- If employees are unavoidably exposed to bioaerosols, has the appropriate RPE and PPE been provided (e.g. FFP3 or air-fed masks)?

Musculoskeletal Risks (MSDs)
- Have the risks associated with manual handling activities been suitably assessed?
- How much manual handling is being performed?
- Are there opportunities to use mechanical aids to replace manual handling?
- Are workers appropriately trained?

Guidance

HSE webpage "Disposal and energy recovery" http://www.hse.gov.uk/waste/disposal.htm

WISH Info 02 – Practical advice on lock-off recycling/recovery machinery

Waste 09 - Safe transport at waste and recycling sites

Waste 18 – Hand sorting of recyclables (totting) with vehicle assistance

Contacts

wasteandrecycling@hse.gov.uk
Appendix 5: Materials Recovery Facilities (MRFs)

Introduction

Materials Recovery Facilities (MRFs), also known as Materials Recycling Facilities or Materials Reclamation Facilities, may be designed to handle materials collected from a single municipal/household kerbside collection system, or more typically, to sort materials from a number of kerbside collection programmes, as well as recyclables from commercial and industrial sources. These operations range in size and are operated by local authorities, major private contractors, the third sector and SMEs who may also operate waste transfer stations.

They play an important role in reducing the amount of waste sent to landfill sites. They use specialised plant that receives, separates and prepares dry recyclable materials. The recyclables go through a variety of mainly mechanical and some manual processes to obtain maximum recovery of materials that will re-enter the manufacturing process as a valuable commodity.

MRFs use a range of technologies to sort recyclables by their physical and chemical properties; shape, size, weight, magnetism and optical scanning.

Health and safety

Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket.
Be aware of risks whilst working in close proximity to working vehicles.
Ensure good personal hygiene and wash hands on leaving site.

Inspection

Identify and record the following information on your inspection case.

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Transport

Safe site
- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated starp?
- Are vehicles suitably segregated from pedestrians?
- If hand sorting “totting” is being performed, have safe refuges been provided or transport movements eliminated in those areas whilst totting is ongoing?
- Have blind corners been eliminated? If not, have mirrors etc. been introduced to improve a driver’s view of obscured areas?
- Are physical control measures in place to restrict access during collection activities?

Safe vehicles
- Are all vehicles fit for use and suitable for the activities they are performing?
- Are all brakes, lights, mirrors, horns etc. suitably maintained?
- Have reversing alarms/beacons been fitted?
- Have all lifting equipment and accessories been thoroughly examined?

Safe drivers
- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for visiting drivers?
- Are visiting drivers supervised and monitored whilst on site?

Machinery
Has access to all dangerous parts of the machine been eliminated or restricted?
Is guarding fixed or interlocked (if access required)?
Are all in-running nips on conveyors guarded (safe by position for operation does not mean safe by position for maintenance)?
Is there a daily / pre-shift guard check system in place?
How are machines maintained and/or cleaned?
How are blockages removed from machines?
Can the machine be isolated and locked off (e.g. maintenance or clearing blockages)?
Are there the means to lock off (e.g. personal padlocks, multiclasp locks)?
Have all operators been suitably trained in the use of the machine they are operating?
Have risk assessments considered engineering/maintenance activities?

Musculoskeletal Risks (MSDs)
Have the risks associated with manual handling activities been suitably assessed?
How much manual handling is being performed?
Are there opportunities to use mechanical aids to replace manual handling?
Are workers appropriately trained?
Have ergonomics been assessed on sorting/picking lines?

Structural stability
Are structures (that are being used to support a load e.g. wall or bay) adequately monitored and maintained?
e.g.:
 Is the site operator aware of the safe work load/capacity of the structure?
 How do they ensure that this loading is not exceeded?
Are the structures routinely inspected (for signs of wear or damage)?
Are items being stacked in a safe manner e.g. vehicles, bales etc.?
e.g. have they considered:
 The type of material being stacked (e.g. will it disintegrate over time or under excessive loading)?
 Does the material easily lend itself to stacking (e.g. compacted bales stack more safely than non-compacteved vehicles)?
 How good are the ground conditions (e.g. how flat and firm)?
 Is the stack inside or outside of a building?
 If outside, will it get affected by adverse weather conditions (weather, vehicle movements etc.)?
 Does the stack need some form of stability aid (lengths of wood within the stack, or use of a bay)?
 What is the volume of traffic movements around the stack, and are there any preventative measures in place to prevent accidental damage?
 How frequently will operators need access to the stack?

Bioaerosols
Is the dutyholder aware of any risks associated with bioaerosols?
Has the increased risk of bioaerosol generation during cleaning/maintenance been considered?
If an issue, have tasks been modified (e.g. pressure hosing or dry sweeping) to eliminate or reduce the recirculation of bioaerosols into the environment in which people are working?
If employees are unavoidably exposed to bioaerosols, has the appropriate RPE and PPE been provided (e.g. FFP3 or air-fed masks)?

Asbestos
Are workers suitably trained to identify asbestos waste?
Are there appropriate arrangements to deal with unexpected asbestos waste?

Guidance

Waste 03 – Orphaned gas cylinders in the waste & recycling industry
Waste 08 – Compactor Equipment
Waste 09 – Safe transport at waste and recycling sites
Waste 13 – Designing and Operating Material Recovery Facilities (MRFs) safely
Waste 18 – Hand sorting of recyclables (totting) with vehicle assistance

Contacts

wasteandrecycling@hse.gov.uk
Appendix 6: Mechanical Biological Treatment (MBT)

Introduction

MBT is a generic term used to describe a number of different residual waste treatment processes that involve both mechanical and biological treatment of municipal solid waste (MSW). MBT plants are used to separate mixed waste streams, typically from MSW, into a range of dry products (typically ferrous and non-ferrous metals and glass), high calorific value refuse derived fuels (RDF) suitable for incineration, and wet biodegradable slurries suitable for either composting or anaerobic digestion (AD).

MBT technology uses the naturally generated heat produced during biological degradation to dry and stabilise MSW. There are two main approaches and the difference between them is the stage at which the biological part of the waste is treated – either before the mechanical separation process or after it has taken place.

MBT itself is a two stage process where on receipt at a processing plant MSW will be, after mixing and shredding (required to ensure waste is evenly mixed and sized), separated into different fractions using a range of different processes such as:

- Screening – removal of larger pieces of waste;
- Magnetic separation – removal of ferrous materials such as tin cans;
- Eddy current separation – removal of non-ferrous metals such as aluminium cans;
- Optical separation – separation of certain types of plastic; and
- Air classification – removal of light materials such as paper.

Once separated the materials can go on to be further recycled and the RDF used in energy production. The quality of the end products will depend upon the process that is used. Dry materials are generally of poor quality and only some types can be recycled e.g. glass is used as an aggregate in road construction. The residual biological material is generally of quality that is only suitable for landfill restoration.

Health and safety

Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket
Be aware of risks whilst working in close proximity to working vehicles.
Ensure good personal hygiene and wash hands on leaving site.

Inspection

Identify and record the following information on your inspection case.

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Machinery

- Has access to all dangerous parts of the machine been eliminated or restricted sfarp?
- Is guarding fixed or interlocked (if access required)?
- Are all in-running nips on conveyors guarded (safe by position for operation does not mean safe by position for maintenance)?
- Is there a daily / pre-shift guard check system in place?
- How are machines maintained and/or cleaned?
- How are blockages removed from machines?
- Can the machine be isolated and locked off (e.g. maintenance or clearing blockages)?
- Are there the means to lock off eg personal padlocks, multiclasp locks?
- Have all operators been suitably trained in the use of the machine they are operating?
- Have risk assessments considered engineering/maintenance activities?

Transport

Safe site

- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated sfarp?
Are vehicles suitably segregated from pedestrians?
If hand sorting "totting" is being performed, have safe refuges been provided or transport movements eliminated in those areas whilst totting is ongoing?
Have blind corners been eliminated? If not, have mirrors etc. been introduced to improve a driver’s view of obscured areas?
Are physical control measures in place to restrict access during collection activities?

Safe vehicles
Are all vehicles fit for use and suitable for the activities they are performing?
Are all brakes, lights, mirrors, horns etc. suitably maintained?
Have reversing alarms/beacons been fitted?
Have all lifting equipment and accessories been thoroughly examined?

Safe drivers
Are only trained workers allowed to drive vehicles?
Are there clear instructions for visiting drivers?
Are visiting drivers supervised and monitored whilst on site?

Musculoskeletal Risks (MSDs)
Have the risks associated with manual handling activities been suitably assessed?
How much manual handling is being performed?
Are there opportunities to use mechanical aids to replace manual handling?
Are workers appropriately trained?
Are workers expected to assist members of the public?

Structural stability
Are structures (that are being used to support a load e.g. wall or bay) adequately monitored and maintained? e.g.:
 - Is the site operator aware of the safe work load/capacity of the structure?
 - How do they ensure that this loading is not exceeded?
Are the structures routinely inspected (for signs of wear or damage)?
Are items being stacked in a safe manner e.g. vehicles, bales etc.? e.g. have they considered:
 - The type of material being stacked (e.g. will it disintegrate over time or under excessive loading)?
 - Does the material easily lend itself to stacking (e.g. compacted bales stack more safely than non-compacted vehicles)?
 - How good are the ground conditions (e.g. how flat and firm)?
 - Is the stack inside or outside of a building?
 - If outside, will it get affected by adverse weather conditions (weather, vehicle movements etc.)?
 - Does the stack need some form of stability aid (lengths of wood within the stack, or use of a bay)?
 - What is the volume of traffic movements around the stack, and are there any preventative measures in place to prevent accidental damage?
 - How frequently will operators need access to the stack?

Bioaerosols
Is the dutyholder aware of any risks associated with bioaerosols?
Has the increased risk of bioaerosol generation during cleaning/maintenance been considered? If an issue, have tasks been modified (e.g. pressure hosing or dry sweeping) to eliminate or reduce the recirculation of bioaerosols into the environment in which people are working?
If employees are unavoidably exposed to bioaerosols, has the appropriate RPE and PPE been provided (e.g. FFP3 or air-fed masks)?

Guidance
HSE webpage "Mechanical biological treatment" http://www.hse.gov.uk/waste/mechanical-bio.htm

WISH Info 02 - Practical advice on lock-off recycling/recovery machinery
Waste 03 – Orphaned gas cylinders in the waste & recycling industry
Waste 08 - Compactor Equipment
Waste 09 - Safe transport at waste and recycling sites
Waste 18 – Hand sorting of recyclables (totting) with vehicle assistance

Contacts
wasteandrecycling@hse.gov.uk
Appendix 7: Metal Recycling inc End of Life Vehicles

Introduction

Metal recycling sites (previously referred to as scrapyards) recycle, process and/or store waste metal. Sites obtain unwanted or unrepairable items (often referred to as "end of life") such as vehicles, electronic equipment, appliances and general waste metal in order to remove valuable components for reuse or selling to other traders or the public. Operators utilise a range of processes and equipment to strip, cut or burn waste to extract key metals or components. The industry has a high proportion of small to medium sized enterprises (SMEs).

Certain sites will be authorised to process and recycle end of life vehicles (ELV). An ELV is any motor vehicle that has been designated as waste (due to its age and/or condition) and has to be appropriately "de-polluted" - the safe and controlled removal of harmful components and substances such as car batteries, engine oil and fuel.

Health and safety

Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket.

Be aware of risks whilst working in close proximity to working vehicles.

Ensure good personal hygiene and wash hands on leaving site.

Inspection

Inspectors who encounter catalytic converter recycling should also notify the Waste and Recycling Sector team of the details of their visit via email (wasteandrecycling@hse.gov.uk).

Identify and record the following information on your inspection case.

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Machinery

- Has access to all dangerous parts of the machine been eliminated or restricted sfarp?
- Is guarding fixed or interlocked (if access required)?
- Are all in-running nips on conveyors guarded (safe by position for operation does not mean safe by position for maintenance)?
- Is there a daily / pre-shift guard check system in place?
- How are machines maintained and/or cleaned?
- How are blockages removed from machines?
- Can the machine be isolated and locked off (e.g. maintenance or clearing blockages)?
- Are there the means to lock off eg personal padlocks, multiclap locks?
- Have all operators been suitably trained in the use of the machine they are operating?
- Have risk assessments considered engineering/maintenance activities?

Transport

Safe site

- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated sfarp?
- Are vehicles suitably segregated from pedestrians?
- If hand sorting “totting” is being performed, have safe refuges been provided or transport movements eliminated in those areas whilst totting is ongoing?
- Has the positioning of skips/containers been considered with a view to eliminating blind corners? If not, have mirrors etc. been introduced to improve a driver’s view of obscured areas?
- If hand sorting “totting” is being performed, have safe refuges been provided or transport movements eliminated in those areas whilst totting is ongoing?
- Are physical control measures in place to restrict access during collection activities?

Safe vehicles

- Are all vehicles fit for use and suitable for the activities they are performing?
- Are all brakes, lights, mirrors, horns etc. suitably maintained?
- Have reversing alarms/beacons been fitted?
have all lifting equipment and accessories been thoroughly examined?

Safe drivers
- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for visiting drivers?
- Are visiting drivers supervised and monitored whilst on site?

Structural stability
- Are structures (that are being used to support a load e.g. wall or bay) adequately monitored and maintained?
 - e.g.:
 - Is the site operator aware of the safe work load/capacity of the structure?
 - How do they ensure that this loading is not exceeded?
- Are the structures routinely inspected (for signs of wear or damage)?
- Are items being stacked in a safe manner e.g. vehicles, bales etc.? e.g. have they considered:
 - The type of material being stacked (e.g. will it disintegrate over time or under excessive loading)?
 - Does the material easily lend itself to stacking (e.g. compacted bales stack more safely than non-compact ed vehicles)?
 - How good are the ground conditions (e.g. how flat and firm)?
 - Is the stack inside or outside of a building?
 - If outside, will it get affected by adverse weather conditions (weather, vehicle movements etc.)?
 - Does the stack need some form of stability aid (lengths of wood within the stack, or use of a bay)?
 - What is the volume of traffic movements around the stack, and are there any preventative measures in place to prevent accidental damage?
 - How frequently will operators need access to the stack?

Catalytic converter recycling
- Does the site cut open catalytic converters to extract precious metals inside (known as de-canning) or just remove cat for sale to specialist processing company?
- If they are cutting them open are they aware of the potential for the can to contain Refractory Ceramic Fibre (RCF) which currently has a WEL of 5mg.m-3 (1 fibre/millilitre) and is classified as a Category 1B carcinogen with properties similar to asbestos?
- If this work is ongoing have they introduced suitable and sufficient control measures to reduce exposure to RCF to as low as reasonably practicable (LEV during the de-canning process; RPE and PPE (especially during cleaning/maintenance activities); and information, instruction and training for workers?

Petrol drainage
- Are they using a safe method to remove petrol e.g. a proprietary fuel retriever or depollution rig?
- Have they controlled fire and explosion risks e.g. piercing fuel tanks, draining petrol, potential flammable atmospheres, sources of ignition etc.?

Musculoskeletal Risks (MSDs)
- Have the risks associated with manual handling activities been suitably assessed?
- How much manual handling is being performed?
- Are there opportunities to use mechanical aids to replace manual handling?
- Are workers appropriately trained?
- Are workers expected to assist members of the public?

Guidance

PM65 “Worker protection at crocodile (alligator) shears” http://www.hse.gov.uk/pubns/books/pm65.htm
PM66 “Scrap baling machines” http://www.hse.gov.uk/pubns/books/pm66.htm
“Scrap and metal recycling” http://www.hse.gov.uk/waste/metal.htm
“End of life vehicle (ELV) industry” http://www.hse.gov.uk/waste/dismantling.htm
WISH Info 02 – Practical advice on lock-off recycling/recovery machinery
Waste 03 – Orphaned gas cylinders in the waste & recycling industry
Waste 08 – Compactor Equipment
Waste 09 – Safe transport at waste and recycling sites
Waste 10 – Recovery of petrol from ELV
Waste 18 – Hand sorting of recyclables (totting) with vehicle assistance

Contacts

wasteandrecycling@hse.gov.uk
Appendix 8: National Lead Inspector (NLI) Companies

Introduction

NLI Companies are 14 of the major waste and recycling companies operating in GB. The initiative is well established and has been in place since 2009/10. Over this time, the aim has been to improve Health and Safety standards by establishing a co-ordinated and consistent approach to inspection within these Companies, assessing their management systems and establishing benchmarking standards.

As the NLI scheme has matured, it has been revised and now concentrates on inspecting individual sites for regulatory compliance. Any inspector can and should inspect the individual sites in line with this Operational Guidance.

The role of the National Lead Inspector is to act as the Central Point of Contact with their NLI Company and coordinate the findings of all local inspections to be able to provide the NLI Company with a composite overview of their performance.

Health & Safety

Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket

Be aware of risks whilst working in close proximity to vehicles

Ensure good personal hygiene and wash hands on leaving site.

Inspection

NLI Inspectors should ensure that all central management issues are entered onto the Master Case for the company. Inspectors should consult the Master Case and, if necessary, contact the NLI Inspector before visiting.

Inspectors should deal with site specific issues as normal. If any system / management / companywide issues are identified, these should be raised with the NLI Inspector following their visit and together agree a suitable course of action.

Inspection cases should be linked to the NLI Company Master case.

The NLI Inspector will be marked on the company page and will be visible on the Site Overview printout.

The NLI Companies with relevant Master Cases are: - Amey, Biffa, Cory, EMR, FCC, Grundon, Kier, Serco, Shanks, SIMs, Suez, Veolia, Viridor, William Tracey.

Identify and record the following information on your inspection case:

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Local Site conditions as per risks identified in ‘Type of Premises’ appendices in this OG

Guidance

See guidance provided in the other Appendices to this OG

Contacts

wasteandrecycling@hse.gov.uk
Appendix 9: Skip Safety

Introduction
A skip is a large open-topped waste container designed for loading onto a skip loader lorry. Instead of being emptied into another vehicle, (as is the case with a wheelee bin and a Refuse Collection Vehicle), a skip is removed, or replaced by an empty skip, and its contents disposed of elsewhere (normally at a waste transfer station or landfill). To facilitate its removal, there are usually lugs at the ends of the skip onto which chains can be attached, permitting it to be lifted onto and off the skip lorry. There are several types of skip containers, but the majority can be classified in three groups: Open skips (which allow easier loading of waste materials and are commonly found on construction sites); Closed skips (more secure, prevent unauthorised use of the skip and can help to ensure that the volume of waste does not exceed the maximum limit), and Roll-On and Roll-Off (RORO) skips that are similar to open skips, but instead of being lifted onto a skip lorry by chains, they are rolled on with a hook.

One end of the skip sometimes has a large door that hinges down to allow manual loading and unloading. Skips are usually durable and tough, made to withstand rough use by tradesmen and labourers.

There are no national standards for the manufacture of skips and containers. However, a number of commonly used industry standards exist which are produced by the Container Handling Equipment Manufacturers Association (CHEM). Due to the multi-purpose nature of their use, skips can be found on almost any type of site.

Road Traffic legislation requires that the contents of full skips be covered to prevent accidental loss of material – this is normally achieved by sheeting. Automated/mechanical sheeting systems are at the top of the hierarchy of control measures because these systems allow the driver to sheet the load from ground level. Manual sheeting from the vehicle is to be discouraged unless it is not reasonably practicable to use automated sheeting systems or sheet from the ground. Loads can be sheeted from platforms removing the need to climb onto the vehicle or the load. Under no circumstances should anyone be allowed to stand or walk on the load.

Health and safety
Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket
Be aware of risks whilst working in close proximity to vehicles
Ensure good personal hygiene and wash hands on leaving site.

Inspection
Skips and containers themselves do not require thorough examination under LOLER, but do require inspection under PUWER.
Identify and record the following information on your inspection case.
1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities
Collection/transfer of skips
- Does the hoisting mechanism (including any wire ropes or chains that form part of the mechanism) for skip loaders and hook loaders comply with LOLER?
- Are skips/containers routinely examined to ensure that they remain in good repair and are fit for purpose?
- Do drivers report hazardous situations (e.g. grossly overloaded or unsafely loaded skips or containers)?
- Is there a safe system for sheeting skips (if necessary)?
- Are dutyholders transporting loaded skips that are stacked on top of each other? This is regarded by DVSA to be unsafe. DVSA would enforce on the highway. HSE should address the matter if seen leaving / entering site.
- Are dutyholders transporting stacked empty skips? If so they should not be stacked more than 3 high.

Skip management
- Have operators selected the correct type of skip for the intended task (e.g. load, stability etc.)?
- Are operators and/or collection workers competent to recognise faults and/or damage to skips/containers that could make them unsafe to use?
- Is there a system to ensure that damaged and unsafe skips or containers are removed from service for disposal, repair or returned to supplier?
- Has the stability of stacked empty skips been considered (e.g. ground conditions, accessibility etc.)?
Loaded skips should never be stacked on top of each other.

Transport

Safe site
- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated completely?
- Are vehicles suitably segregated from pedestrians?
- Has the positioning of skips/containers been considered with a view to eliminating blind corners? If not, have mirrors etc. been introduced to improve a driver’s view of obscured areas?
- Physical control measures to prevent access to area during collection of full skips/containers?

Safe vehicles
- Are all vehicles fit for use and suitable for the activities they are performing?
- Are all brakes, lights, mirrors, horns etc. suitably maintained?
- Have reversing alarms/beacons been fitted?
- Have all lifting equipment and accessories been thoroughly examined?

Safe drivers
- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for visiting drivers?
- Are visiting drivers supervised and monitored whilst on site?

Asbestos
- Are workers suitably trained to identify asbestos waste?
- Are there appropriate arrangements to deal with unexpected asbestos waste?

Guidance

HSE webpage “Skip hire and waste transfer” http://www.hse.gov.uk/waste/skiphire.htm
HSE webpage “Preventing ‘runaway’ skip loader incidents” http://www.hse.gov.uk/waste/skiploaders.htm
HSE webpage “Load security when raising and lowering” www.hse.gov.uk/waste/hookloader.htm
HSE webpage “Failure of wishbone bale bar (hook bar)” www.hse.gov.uk/waste/wishbone.htm
Waste 06 - Skip and Container Safety in Waste Management and Recycling
Waste 09 - Safe transport at waste and recycling sites

Contacts

wasteandrecycling@hse.gov.uk
Appendix 10: Waste Electrical and Electronic Equipment (WEEE)

<table>
<thead>
<tr>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Electrical and Electronic Equipment recycling (WEEE) is a specialist part of the waste and recycling industry, and includes most products that have a plug or need a battery. There are 10 broad categories of WEEE:</td>
</tr>
<tr>
<td>- Large household appliances e.g. fridges, cookers, microwaves, washing machines and dishwashers;</td>
</tr>
<tr>
<td>- Small household appliances e.g. vacuum cleaners, irons, toasters and clocks;</td>
</tr>
<tr>
<td>- IT and telecommunications equipment e.g. computers, copying equipment, telephones and calculators;</td>
</tr>
<tr>
<td>- Consumer equipment e.g. radios, televisions, hi-fi equipment, camcorders ad musical instruments;</td>
</tr>
<tr>
<td>- Lighting equipment e.g. straight and compact fluorescent tubes and high intensity discharge lamps;</td>
</tr>
<tr>
<td>- Electrical and electronic tools – e.g. drills, saws and sewing machines, electric lawnmowers;</td>
</tr>
<tr>
<td>- Toys, leisure and sports equipment e.g. electric trains, games consoles and running machines;</td>
</tr>
<tr>
<td>- Medical devices e.g. (non-infected) dialysis machines, analysers, medical freezers, cardiology equipment;</td>
</tr>
<tr>
<td>- Monitoring and control equipment e.g. smoke detectors, thermostats and heating regulators; and</td>
</tr>
<tr>
<td>- Automatic dispensers e.g. hot drink dispensers and money dispensers.</td>
</tr>
<tr>
<td>A wide range of materials e.g. metal, glass, plastics, ceramics and precious metals can be found in WEEE, and treatment varies enormously according to the type of WEEE and technology that is used. Some facilities utilise large-scale shredding technologies, others use a disassembly process (manual, automated or a combination). Various standards exist for both disassembly and shredding operations and in particular for the removal of certain hazardous substances and components in order to avoid risks to health and safety and damage to equipment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health and safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket</td>
</tr>
<tr>
<td>Be aware of risks whilst working in close proximity to vehicles</td>
</tr>
<tr>
<td>Ensure good personal hygiene and wash hands on leaving site</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspectors could potentially discover a range of hazardous substances at a WEEE Recycling Plant, including:</td>
</tr>
<tr>
<td>- Mercury (which can be found in fluorescent lamps, medical equipment, and mobile phones);</td>
</tr>
<tr>
<td>- Phosphorous pentachloride (liberated when processing some glass to remove the fluorescent coating);</td>
</tr>
<tr>
<td>- Polychlorinated biphenyls – PCBs (found in capacitors and transformers manufactured before 1986);</td>
</tr>
<tr>
<td>- Refractory Ceramic Fibre – RCF (some domestic and building heating appliances);</td>
</tr>
<tr>
<td>- Asbestos (found in older appliances such as electric coffee pots, toasters, irons and electric heaters);</td>
</tr>
<tr>
<td>- Lead (liberated when processing some glass);</td>
</tr>
<tr>
<td>- Radioactive substances (fill level detectors, static eliminators, radium luminised dials, smoke detectors).</td>
</tr>
<tr>
<td>Identify and record the following information on your inspection case.</td>
</tr>
<tr>
<td>1. Processes carried out and equipment used</td>
</tr>
<tr>
<td>2. Are appropriate control measures used, checked and maintained</td>
</tr>
<tr>
<td>3. Specific control failings</td>
</tr>
<tr>
<td>4. Any management failings such as training, instruction etc.</td>
</tr>
<tr>
<td>5. Any SG involvement</td>
</tr>
<tr>
<td>6. Any Material Breach or Enforcement action taken</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery</td>
</tr>
<tr>
<td>- Has access to all dangerous parts of the machine been eliminated or restricted sfarp?</td>
</tr>
<tr>
<td>- Is guarding fixed or interlocked (if access required)?</td>
</tr>
<tr>
<td>- Are all in-running nips on conveyors guarded (safe by position for operation does not mean safe by position for maintenance)?</td>
</tr>
<tr>
<td>- Is there a daily / pre-shift guard check system in place?</td>
</tr>
<tr>
<td>- How are machines maintained and/or cleaned?</td>
</tr>
<tr>
<td>- How are blockages removed from machines?</td>
</tr>
<tr>
<td>- Can the machine be isolated and locked off (e.g. maintenance or clearing blockages)?</td>
</tr>
<tr>
<td>- Are there the means to lock off eg personal padlocks, multiclap locks?</td>
</tr>
<tr>
<td>- Have all operators been suitably trained in the use of the machine they are operating?</td>
</tr>
<tr>
<td>- Have risk assessments considered engineering/maintenance activities?</td>
</tr>
</tbody>
</table>
Transport

Safe Site
- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated altogether?
- Are vehicles suitably segregated from pedestrians?
- Have blind corners been eliminated? If not, have mirrors been introduced to improve driver’s view?
- Are systems and physical control measures in place to restrict access during collection activities?
- If hand sorting “totting” is being performed, have safe refuges been provided or transport movements eliminated in those areas whilst totting is ongoing?

Safe Vehicles
- Are all vehicles fit for use and suitable for the activities they are performing?
- Are all brakes, lights, mirrors, horns etc. suitably maintained?
- Have reversing alarms/beacons been fitted?
- Have all lifting equipment and accessories been thoroughly examined?

Safe Drivers
- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for visiting drivers?
- Are visiting drivers supervised and monitored whilst on site?

Structural stability
- Are structures (that are being used to support a load e.g. wall or bay) adequately monitored and maintained?
 - e.g.:
 - Is the site operator aware of the safe work load/capacity of the structure?
 - How do they ensure that this loading is not exceeded?
- Are the structures routinely inspected (for signs of wear or damage)?
- Are items being stacked in a safe manner e.g. bales, white goods etc.? e.g. have they considered:
 - Have they considered an alternative way of stacking?
 - The type of material being stacked (e.g. will it disintegrate over time or under excessive loading)?
 - Does the material easily lend itself to stacking (e.g. compacted bales stack more safely than non-compacted items)?
 - How good are the ground conditions (e.g. how flat and firm)?
 - Is the stack inside or outside of a building?
 - If outside, will it get affected by adverse weather conditions; (weather, vehicle movements etc.)?
 - Volume of traffic movement around the stack? Any measures to prevent accidental damage?
 - How frequently will operators need access to the stack?

Substances hazardous to health
- Does the WEEE being processed contain substances hazardous to health?
- Has a COSHH assessment been performed? Do any substances have a WEL?
- If relevant, have suitable control measures been introduced to ensure exposure below the WEL?
- Are control measures maintained in a good working order?
- For substances not covered by COSHH (e.g. lead, asbestos and radioactive substances) have control measures (in accordance with those specific regulations) been introduced?
- Have adequate emergency procedures been established and is everyone trained in what to do?
- Has any health surveillance been carried out (if required)?

Musculoskeletal risks (MSDs)
- Have the risks associated with manual handling activities been suitably assessed?
- How much manual handling is being performed?
- Are there opportunities to use mechanical aids to replace manual handling?

Guidance

*Waste Electrical and Electronic Equipment recycling (WEEE) http://www.hse.gov.uk/waste/waste-electrical.htm
WISH Info 02 - Practical advice on lock-off recycling/recovery machinery
Waste 03 – Orphaned gas cylinders in the waste & recycling industry
Waste 08 - Compactor Equipment
Waste 09 - Safe transport at waste and recycling sites
Waste 18 – Hand sorting of recyclables (totting) with vehicle assistance

Contacts

wasteandrecycling@hse.gov.uk
Appendix 11: Waste Transfer Stations

Introduction

A waste transfer station is a building or processing site for the temporary deposition of waste. They are used as a convenient tipping point for general waste and recyclable materials. Local waste collection vehicles will deposit their waste, the waste is then bulked up before being loaded and transported in larger vehicles to another location for further treatment or disposal.

Often Waste transfer stations may be a combination of different processes.

Health and safety

Ensure appropriate PPE is worn - e.g. safety footwear, & hi viz jacket
Be aware of risks whilst working in close proximity to vehicles
Ensure good personal hygiene and wash hands on leaving site.

Inspection

Identify and record the following information on your inspection case.

1. Processes carried out and equipment used
2. Are appropriate control measures used, checked and maintained
3. Specific control failings
4. Any management failings such as training, instruction etc.
5. Any SG involvement
6. Any Material Breach or Enforcement action taken

Priorities

Transport

Safe site
- Have they assessed the risks from workplace transport at the site?
- Is there a clear directional flow of traffic around the site?
- Has a one way system been considered/implemented?
- Has reversing been eliminated sfarp?
- Are vehicles suitably segregated from pedestrians?
- Has the positioning of skips/containers been considered with a view to eliminating blind corners? If not, have mirrors etc. been introduced to improve a driver's view of obscured areas?
- Physical control measures to prevent access to area during collection of full skips/containers?
- If hand sorting “totting” is being performed, have safe refuges been provided or transport movements eliminated in those areas whilst totting is ongoing?

Safe vehicles
- Are all vehicles fit for use and suitable for the activities they are performing?
- Are all brakes, lights, mirrors, horns etc. suitably maintained?
- Have reversing alarms/beacons been fitted?
- Have all lifting equipment and accessories been thoroughly examined?

Safe drivers
- Are only trained workers allowed to drive vehicles?
- Are there clear instructions for visiting drivers?
- Are visiting drivers supervised and monitored whilst on site?

Machinery

- Has access to all dangerous parts of the machine been eliminated or restricted sfarp?
- Is guarding fixed or interlocked (if access required)?
- Are all in-running nips on conveyors guarded (safe by position for operation does not mean safe by position for maintenance)?
- Is there a daily / pre-shift guard check system in place?
How are machines maintained and/or cleaned?

How are blockages removed from machines?

Can the machine be isolated and locked off (e.g. maintenance or clearing blockages)?

Are there the means to lock off e.g. personal padlocks, multiclasp locks?

Have all operators been suitably trained in the use of the machine they are operating?

Have risk assessments considered engineering/maintenance activities?

Musculoskeletal Risks (MSDs)

Have the risks associated with manual handling activities been suitably assessed?

How much manual handling is being performed?

Are there opportunities to use mechanical aids to replace manual handling?

Are workers appropriately trained?

Have ergonomics been assessed on sorting/picking lines?

Structural stability

Are structures (that are being used to support a load e.g. wall or bay) adequately monitored and maintained?

 e.g.:
 - Is the site operator aware of the safe work load/capacity of the structure?
 - How do they ensure that this loading is not exceeded?

Are the structures routinely inspected (for signs of wear or damage)?

Are items being stacked in a safe manner e.g. vehicles, bales etc.? e.g. have they considered:

 - The type of material being stacked (e.g. will it disintegrate over time or under excessive loading)?
 - Does the material easily lend itself to stacking (e.g. compacted bales stack more safely than non-compacted vehicles)?
 - How good are the ground conditions (e.g. how flat and firm)?
 - Is the stack inside or outside of a building?
 - If outside, will it get affected by adverse weather conditions (weather, vehicle movements etc.)?
 - Does the stack need some form of stability aid (lengths of wood within the stack, or use of a bay)?
 - What is the volume of traffic movements around the stack, and are there any preventative measures in place to prevent accidental damage?
 - How frequently will operators need access to the stack?

Asbestos

Are workers suitably trained to identify asbestos waste

Are there appropriate arrangements to deal with unexpected asbestos waste

Guidance

For those carrying out hand totting, tatting or picking from floor activities, a Checklist is available. Although it is not comprehensive, the self-audit can be used as an aide memoire.

WISH Info 02 - Practical advice on lock-off recycling/recovery machinery

Waste 03 – Orphaned gas cylinders in the waste & recycling industry

Waste 08 Compactor Equipment

Waste 09 - Safe transport at waste and recycling sites

Waste 18 – Hand sorting of recyclables (totting) with vehicle assistance

Contacts

wasteandrecycling@hse.gov.uk
Appendix 12: Initial Enforcement Expectations

NB: Should an Inspector identify that there is (or is likely to be) a risk of serious personal injury arising from any of the situations below, then they should consider issuing a Prohibition Notice, regardless of the IEE indicated in the table.

<table>
<thead>
<tr>
<th>MACHINERY (Specific and General)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Machine</td>
</tr>
<tr>
<td>Baler Compactor Baling Press</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Conveyor</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Machine</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Crocodile Shears</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Shredder Granulator Fragmentiser</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Trommel</td>
</tr>
<tr>
<td>All Machinery and/or work equipment</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
TRANSPORT

<table>
<thead>
<tr>
<th>Situation</th>
<th>IEE</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate segregation of pedestrians and vehicles</td>
<td>IN</td>
<td>Vehicles may use a traffic route without causing danger to the health or safety of persons at work near it – WHSWR Reg. 17</td>
</tr>
<tr>
<td>Inadequate collection route risk assessments</td>
<td>IN</td>
<td>Suitable and sufficient assessment of the risks to the health and safety of employees to which they are exposed whilst they are at work – MHSWR Reg. 3</td>
</tr>
<tr>
<td>No safe refuges for totters / drivers</td>
<td>PN</td>
<td>Sufficient separation for vehicles and pedestrians using the same traffic route – WHSWR Reg. 17</td>
</tr>
<tr>
<td>Untrained drivers/operators</td>
<td>PN & IN</td>
<td>All persons who use work equipment have been provided training in the methods which may be adopted when using the work equipment – PUWER Reg. 9</td>
</tr>
<tr>
<td>Inadequate maintenance on vehicles</td>
<td>IN</td>
<td>Work equipment is maintained in an efficient state, in efficient working order and in good repair – PUWER Reg. 6</td>
</tr>
<tr>
<td>Failure to thoroughly examine lifting equipment</td>
<td>IN</td>
<td>Lifting equipment which is exposed to conditions causing deterioration which is liable to result in dangerous situations is thoroughly examined – LOLER Reg. 9</td>
</tr>
<tr>
<td>Raising persons unsafely eg on forks of a lift truck / bucket on excavator</td>
<td>PN</td>
<td>Risk of serious personal injury from fall – Work at Height Reg. 6</td>
</tr>
</tbody>
</table>

HEALTH

<table>
<thead>
<tr>
<th>Task</th>
<th>Situation</th>
<th>IEE</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of jet washers for cleaning</td>
<td>No or inadequate RPE</td>
<td>PN</td>
<td>RPE (minimum FFP3) will be required to achieve adequate control to exposure to bioaerosols and endotoxins - COSHH Reg. 7</td>
</tr>
<tr>
<td>Cutting open catalytic convertors – exposure to RCF</td>
<td>Lack of LEV</td>
<td>PN</td>
<td>Refractory Ceramic Fibre (RCF) currently has a WEL of 5mg.m⁻³ (1 fibre/millilitre) and is classified as a Category 1B carcinogen with properties similar to asbestos. LEV required for cutting and RPE and PPE during cleaning/maintenance activities COSHH Reg. 7</td>
</tr>
<tr>
<td>Asbestos storage</td>
<td>Not bagged or stored in locked skip</td>
<td>IN</td>
<td>Risk of contamination and exposure to persons on site Control of Asbestos Reg. 6,7,11,16 & 24</td>
</tr>
<tr>
<td>Asbestos Awareness</td>
<td>No/inadequate training on asbestos awareness</td>
<td>IN</td>
<td>Result in inability to detect asbestos – Control of Asbestos Regulations – Reg. 10</td>
</tr>
<tr>
<td>Asbestos handling</td>
<td>Lack of / inadequate procedures for handling asbestos waste</td>
<td>IN / PN</td>
<td>Control of Asbestos Regs 6,7,11,12,13,15 & 16</td>
</tr>
</tbody>
</table>

If further advice/discussion is required please contact SG Occupational Hygiene (assessment and control).
Appendix 13: Examples of industry specific potential catastrophic events

Below are specific industry examples that could lead to potentially catastrophic events. There are other events common across the industries that are not included here. See above and OC18/12 for more details.

<table>
<thead>
<tr>
<th>Potential Catastrophic Event:</th>
<th>Due to:</th>
<th>Examples of indicative issues:</th>
<th>Existing Guidance:</th>
</tr>
</thead>
</table>
| Fire & explosion. | Lack of General Fire Precautions NB verbal advice only then refer immediately to the local Fire Authority and EA | Stack separation Lack of escape routes | WISH Waste 8 - Fire Guidance
EA Fire Prevention Plans |
| Orphan Cylinders | Inadequate pre-sorting of waste Inadequate storage arrangements | | Waste 03 – Orphaned gas cylinders in the waste & recycling industry |
| Storage of Oily Rags | Inadequate DSEAR assessment Inadequate storage | | HSG 140 The Safe Use and Handling of Flammable Liquids Paragraph 118 |
| Exposure to oxygen deficient atmospheres; exposure to noxious gases; engulfment (solids / liquids). | Entry into a confined space / silos | Need to enter confined space has not been designed-out.
Safe Work in Confined Spaces. ACOP to the Confined Spaces Regulations 1997 |
| Structural Safety / structural collapse | Collapse of large size precast panels | Poorly designed storage Loading waste against non-load bearing walls | Consult SG |
Appendix 14: Visiting Officer Bioaerosol questionnaire

<table>
<thead>
<tr>
<th>Name of company</th>
<th>Address of site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of person seen</td>
<td>Position of person seen</td>
</tr>
<tr>
<td>Type of site (process etc.)</td>
<td>Number of workers on site</td>
</tr>
<tr>
<td>COIN details</td>
<td>Customer Number</td>
</tr>
</tbody>
</table>

1. What do they recycle? | FOOD | GARDEN WASTE | OTHER |
2. Where do they recycle? | INDOORS | OUTDOORS | BOTH |
3. Do they know what the health risks from bioaerosols are? | YES | NO |
4. Do they believe that there are bioaerosols on site? | YES | NO | DON’T KNOW |
5. If no, why not? |
6. If yes, what tasks or jobs do they think produce the greatest bioaerosol risk? |
7. If applicable, have they introduced any control measures? | YES | NO |
8. If yes, what measures have they performed/introduced? | AIR MONITORING | FACE MASKS | IN CAB FILTRATION | OTHER |
9. If other, what are they? |
10. Do workers undergo routine health surveillance? | YES | NO |
11. If yes, what health surveillance is performed? |