SPECIFICATION FOR SEAMLESS STEEL

TRANSPORTABLE PRESSURE RECEPTACLES

DOT - 3E (HSE)
CONTENTS

1. SCOPE 4

2. CERTIFICATE OF COMPLIANCE 4

3. REFERENCES 4

4. PERMITTED STEEL 4

5. IDENTIFICATION OF MATERIAL 4

6. DEFECTS 5

7. MANUFACTURE 5

8. WALL THICKNESS 5

9. HEAT TREATMENT 6

10. THREADED OPENINGS 6

11. PRESSURE RELIEF DEVICES 6

12. HYDROSTATIC TESTING 9

13. PRESSURE CYCLING TEST 9

14. HYDRAULIC BURST TEST 10

15. FLATTENING TEST 11

16. LEAKAGE TEST 11

17. REJECTED CYLINDERS 12

DOT 3E (HSE) Issue 1 FEBRUARY 2000
<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
</table>
| 18. MARKING | 12
| 19. PERIODIC INSPECTION AND TESTING | 13
| APPENDIX 1 - INSPECTORS REPORT | 14

DOT 3E (HSE) Issue 1 FEBRUARY 2000
1. **SCOPE**

This specification details the requirements for the material, design, construction and testing of seamless steel transportable pressure receptacles, ie gas cylinders, over 0.5 kg with an outside diameter not exceeding 50.8 mm, a length less than 610 mm and a service pressure of 125 bar. Gas cylinders to this specification shall not be used for the carriage of Hydrogen.

2. **CERTIFICATE OF COMPLIANCE**

The Approved Verification (Inspection) Body shall certify that the manufacture, inspection and testing of the cylinders was carried out in compliance with the requirements of this specification. Note: A suitable form of certificate is shown in Appendix 1.

3. **REFERENCES**

CGA-C-1 - Compressed Gas Association - Hydrostatic Testing.

4. **PERMITTED STEEL**

Open-hearth or electric steel of uniform quality. The content percentage may not exceed the following: -

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>0.55%</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>0.045%</td>
</tr>
<tr>
<td>Sulphur</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

5. **IDENTIFICATION OF MATERIAL**

The material of construction shall be identified by a suitable method and plates and billets for hot-drawn cylinders shall be marked with the heat number.
6. **DEFECTS**

Materials with seams, cracks, laminations, or other injurious defects, are not permitted.

7. **MANUFACTURE**

7.1 Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this specification. No fissure or other defect is permitted that is likely to weaken the finished cylinder appreciably. A reasonably smooth and uniform surface finish is required. If not originally free from such defects, the surface may be machined or otherwise treated to eliminate these defects. Dirt and scale shall be removed as necessary to afford proper inspection.

7.2 The thickness of the bottoms of cylinders welded or formed by spinning is, under no condition, to be less than two times the minimum wall thickness of the cylindrical shell; such bottom thicknesses to be measured within an area bounded by a line representing the points of contact between the cylinder and floor when the cylinder is in a vertical position.

7.3 Welding or brazing for any purpose whatsoever is not permitted on these cylinders, except for spun cylinders whose end closures are welded by the spinning process.

8. **WALL THICKNESS**

8.1 The thickness of each cylinder shall conform to the following:-

8.1.1 The wall stress may not exceed 166MPa.

8.2 Calculation of wall thickness shall be by the following formula:

\[
S = \left[\frac{P}{10 \left(1.3D^2 + 0.4d^2 \right)} \right] / (D^2 - d^2)
\]

where \(S\) = wall stress in Mpa
P = minimum test pressure prescribed for water jacket test in bar

D = outside diameter in mm

d = inside diameter in mm

9. HEAT TREATMENT

9.1 The completed cylinders must be uniformly and properly heat treated to a procedure agreed with the Approved Verification Body prior to tests.

10. THREADED OPENINGS

10.1 All threads are required to be clean cut, even, without cutting tool marks and to gauge.

10.2 Taper threads, when used, are to be of length not less than as specified for American Standard taper pipe threads.

10.3 Straight threads having at least 4 engaged threads are permitted and shall have a tight fit. The calculated shear strength shall be at least 10 times the test pressure of the cylinder. Gaskets, adequate to prevent leakage, are required.

11. PRESSURE RELIEF DEVICES

11.1. General Requirements

No pressure relief device shall be fitted to a cylinder intended for the conveyance of toxic gases. However, a pressure relief device may be fitted to a cylinder intended for the conveyance of non-toxic gases.

The materials of construction for all pressure relief devices shall be compatible with the gas to be conveyed and other service conditions.
All pressure relief devices shall be so designed and fitted as to ensure that the cooling effect of the contents of the container during discharge shall not prevent the effective operation of the devices.

The outlets from all pressure relief devices shall be so sited that free discharge from the devices is not impaired.

The outlets from all pressure relief devices shall be so designed and constructed as to prevent the collection of moisture or other foreign matter that could adversely affect the performance of the devices.

11.2. Pressure Relief Valves

If a pressure relief valve is fitted to a cylinder, it shall be of the spring-loaded type. Where practicable the pressure at which the relief valve is designed to start lifting shall be marked on the relief valve or the outlet valve body where the relief valve forms part of the outlet valve.

Discharge from the pressure relief valve shall be obtained at a pressure not greater than the test pressure of the cylinder, except in the case of liquefied petroleum gas cylinders for service in Great Britain.

Where liquefied petroleum gas cylinders for service in Great Britain are fitted with pressure relief valves they shall be set as follows:

- (a) Propane: 26 bar;

- (b) Butane: 21 bar.

11.3. Bursting discs

Bursting discs if fitted, shall be constructed in accordance with BS 2915 and shall be so designed as to ensure that rupture occurs at a pressure not greater than the test pressure of the cylinder, except in the case of cylinders for halons and nitrogen.
Note: A bursting disc may be fitted to any cylinder intended for the conveyance of non-toxic and non-flammable gases. The pressure at which the bursting disc is designed to rupture shall, where practicable, be stamped on the bursting disc holder.

If a cylinder is liable to be subjected to vacuum conditions during service, the bursting disc shall be resistant to vacuum or be fitted with a vacuum support.

11.4. Cylinder valve protection.

Cylinders charged with flammable, corrosive, or noxious gases, shall have their valves protected by one of the following methods.

11.4.1. By equipping the cylinders with securely attached metal caps, protective collars, neckrings or valve blocks of sufficient strength to protect the valves from damage during transit.

11.4.2. By boxing or crating the cylinders so as to give proper protection to the valves.

11.4.3. By so constructing the cylinders that the valve is recessed into the cylinder or otherwise protected so that it will not be subjected to a blow when the cylinder is dropped on a flat surface.

11.4.4. By loading the cylinders compactly in an upright position and securely bracing in cars or motor vehicles, when loaded by the consignor and to be unloaded by the consignee.

11.4.6. By equipping with valves strong enough to avoid damage during transit for cylinders containing non-liquefied gas under pressure not exceeding 20.7 bar at 21°C.
12. HYDROSTATIC TEST

12.1 All cylinders shall be hydrostatically tested. The hydrostatic test shall be carried out using suitable methods, see CGA-C-1, and operated so as to obtain accurate data. Pressure gauges must permit reading to an accuracy of 1 percent and calibrated expansion gauges to an accuracy of either 1 percent or 0.1ml.

12.2 Pressure must be maintained for at least 30 seconds and sufficiently longer to ensure complete expansion.

12.3 Each cylinder must be tested to at least 210 bar and not exceeding 315 bar and show no defects.

12.4 Cylinders tested to a pressure in excess of 250 bar must burst at a pressure greater than 528 bar when tested in accordance with Section 14.

13 PRESSURE CYCLING TEST

13.1 Pressure cycling tests must be performed for each new design on three cylinders. The cylinders shall carry stamp marking in accordance with Section 18. The test shall be carried out using a non-corrosive pressurising fluid. The maximum pressure in the cycle shall either be the design test pressure of the cylinder, or 67% of this value. The minimum test pressure in the cycle shall not exceed 10% of the maximum pressure. The frequency of cycling shall not exceed 15 cycles/minute, and the temperature measured on the outside of the cylinder during the test shall not exceed 50°C.

13.2 Acceptance values for the test are:

- 12,000 cycles without failure when the maximum cycle pressure is the design pressure; or,

- 80,000 cycles without failure when the maximum cycle pressure is 67% of the design test pressure;
Failure shall be include leakage from any part of the cylinder other than from the neck/pipe joint.

13.3 Following attainment of the required number of cycles:

One of the three cylinders shall continue to be pressure cycled to destruction under the same cycle conditions and the number of cycles causing destruction and the mode of failure recorded;

Two of the three cylinders shall be subject of the hydraulic burst test, Section 14.

14 HYDRAULIC BURST TEST

14.1 One cylinder from each lot of 500 or less shall be subjected to an hydraulic burst test. The cylinders shall carry stamp marking in accordance with Section 18. The rate of pressurisation shall not exceed 5 bar/second. In the course of the test, the yield pressure, burst pressure, burst mode and volumetric expansion shall be recorded.

14.2 Test acceptance criteria are:

1). The cylinder must burst at a pressure greater than 422 bar or

2). The cylinder must hold a pressure of 844 bar for a period of 30 seconds without bursting, after which it must be subjected to a flattening test.

3). The cylinder shall burst from a point within the sidewall.

4). The cylinder shall remain in one piece after bursting.
15. **FLATTENING TEST**

15.1 A flattening test must be performed on cylinders referred to in 14.2 2) above, by placing the cylinder between wedge shaped knife edges having 60° included angle, rounded to 13mm radius. The longitudinal axis of the cylinder must be at a 90° angle to knife edges during the test.

15.2 Acceptance criteria for flattening test :-

No cracking permitted to six times wall thickness between knife edges.

16. **LEAKAGE TEST**

16.1 All spun cylinders and plugged cylinders (see Notes 1 and 2) must be tested for leakage by gas or air pressure after the bottom has been cleaned and is free from all moisture. Pressure, approximately the same as but no less than service pressure, must be applied to one side of the finished bottom over an area of at least 6.25% of the total area of the bottom but not less than 19mm in diameter, including the closure, for at least one minute, during which time the other side of the bottom exposed to pressure must be covered with water and closely examined for indications of leakage. Any cylinders exhibiting leakage must be rejected.

Note 1: A spun cylinder is one in which an end closure in the finished cylinder has been welded by the spinning process.

Note 2: A plugged cylinder is one in which a permanent closure in the bottom of a finished cylinder has been effected by a plug.

Note 3: As a safety precaution, if the manufacturer elects to make this test before the hydrostatic test, he should design his apparatus so that the pressure is applied to the smallest area practicable, around the point of closure, and so as to use the smallest possible volume of air or gas.
17. **REJECTED CYLINDERS**

(a) Reheat treatment of rejected cylinders is allowed. Subsequent thereto, acceptable cylinders must pass all prescribed tests to be acceptable. Repair by welding or spinning is not authorised.

Note 1: Spun cylinders rejected under the provision of Section 16 may be removed from the spun cylinder category by drilling to remove defective material, tapping and plugging.

18. **MARKING**

18.1 Each cylinder which complies with the requirements of this specification shall be permanently and legibly marked on the shoulder, top head, neck or sidewall, with the following:

(a) **DOT - 3E (HSE)** followed by the service pressure in bar at 15°C.

(b) Manufacturer’s mark or registration number.

(c) Hydrostatic Test Pressure in bar.

(d) The date of the hydrostatic test so placed that dates of subsequent tests can be easily added.

(e) The design water capacity as specified in the design drawing.

(f) The weight of the cylinder in kgs.

(g) The words ‘Spun’ or ‘Plug’ must be placed near to the HSE specification number when an end closure in the finished cylinder has been welded by the spinning process or effected by plugging.

18.2 The marks shall be at least 6 mm in height.
Note 1: A DOT 3E (HSE) cylinder is not required to be marked with the Inspector’s mark.

Note 2: An identifying Lot number may be marked on the cylinder in place of a serial number.
 Each Lot shall not have over 500 cylinders.

19 PERIODIC INSPECTION AND TESTING

In-service inspection and testing may be carried out in accordance with the basic requirements of British Standard BS5430: Part 1 "Periodic Inspection testing and maintenance of transportable gas containers for seamless steel containers." The duties concerning the in-service inspection of cylinders is covered under the requirements of Part 3 of “The Carriage of Dangerous Goods (Classification, Packaging and Labelling) and Use of Transportable Pressure Receptacles Regulations 1996”, SI 2092.
APPENDIX 1

INSPECTOR’S REPORT

Manufacturing Location ..

Consigned to ...

Address ...

Quantity ...

Size .. mm outside diameter by mm long

Marks Stamped into the shoulder of the cylinder are:

Specification ...

Serial numbers ... to .. inclusive

Inspector’s mark ..

Identifying Symbol (registered) ...

Test Date ...

Tare Weights ..

Other Marks (if any) ..

These cylinders were made by process of ..

..

The cylinders were heat treated by the process of ...

..

The material used was identified by the following ..

DOT 3E (HSE) Issue 1 FEBRUARY 2000
The material used was verified as to chemical analysis and record thereof is attached hereto. The heat numbers ...

(were - were not) marked on the material.

All material, such as seamless tubing, was inspected and each cylinder was inspected both before and after closing the ends; all that was accepted was found free from seams, cracks, laminations and other defects which might prove injurious to the strength of the cylinder. The processes of manufacture and heat treatment of cylinders were supervised and found to be efficient and satisfactory. The cylinder walls were measured and the minimum thickness noted was mm. The outside diameter was determined by a close approximation to be mm. The wall stress was calculated to be N/mm² under an internal pressure bar.

Hydrostatic tests and other tests, as prescribed in this specification made in the presence of the inspector and all material and cylinders accepted were found to be in compliance with the requirements of this specification. Records thereof are attached hereto. I hereby certify that all of these cylinders proved satisfactory in every way and comply with the requirements of specification No: DOT - 3E (HSE).

Signed: ..

(Approved Verification Body)

(Place) ...

(Date) ..