WORKING GROUP ON ACTION TO CONTROL CHEMICALS

Minutes of the 21st meeting of the Working Group on Action to Control Chemicals held on 25th October 2011, Mallard House York

Members Present
Steve Fairhurst (Chair)
Robin Chapman
Rosemarie Hutchinson
David Farrar
Steve Williams
Martie van Tongeren
Tony Fletcher
Len Levy

Guest presenters
Dr Stuart Wilkinson and Dr Glyn Morley

Apologies
Ching Aw
Steve Bailey
Steve Binks
Alastair Hay

HSE and HSL Officials Present
Jayne Wilder (Secretariat)
Yiqun Chen
John Cocker
Joan Cooke
Andy Darnton
Gareth Evans
Jenny Hagan
Chris Keen
John McAlinden
John Osman
Dil Sen

HPA
George Kowalczyk

1 Introductions and apologies

1.1 The Chairman welcomed everybody to the 21st meeting of the committee. He welcomed officials from HSE and HSL attending for specific items. He welcomed Dr Stuart Wilkinson (Keystone Europe Ltd) who would be making a presentation on C. I. Solvent Red 164 and Dr Glyn Morley (Cast Metals Federation) attending for the items on C. I. Solvent Red 164 and long latency health risks in foundries.

Apologies were received from Ching Aw, Steve Bailey, Steve Binks, and Alastair Hay

2 Administrative issues
2.1 The Chairman asked for any declarations of interest related to the items on the agenda. Robin Chapman declared an interest in the item on C.I Solvent Red 164 as his employer produces azo dyes. David Farrar noted he had an interest in some of the substances considered in the paper on the Burden of Occupational Cancer in the UK. Martie van Tongeren also declared an interest in this item because of input to this initiative undertaken by the Institute of Occupational Medicine (IOM).

3.1 HSL provided a short introduction to the work that had been undertaken since WATCH last considered C.I. Solvent Red 164 in 2008. The HSE/HSL group doing the work had been gathering more biological monitoring data for workers in companies supplying or using dye penetrants containing C.I. Solvent Red 164. Workers had provided pre- and post-shift urine samples that had been analysed for aniline and ortho-toluidine, potential breakdown products of at least one of the chemical structures (see below) described as C.I. Solvent Red 164. The biological monitoring data indicated that urinary levels of both aniline and o-toluidine in workers employed in penetrant dye formulation work were no higher than general population levels. For users of the dye, the data indicated that the levels of the potential two breakdown products in most samples were mostly within the range for the general population. The exceptions were slightly elevated aniline levels in six samples from four workers (from a total of 127 samples from 15 workers). Three of these six results were disregarded because of concerns about their reliability, due to dilution of the samples. The remaining three values (out of 127) being just above the background range is within statistical expectations.

3.2 WATCH was also informed that a recent publication has suggested that ortho-toluidine is not a potential metabolite of at least one of the chemical structures claimed to represent C.I. Solvent Red 164.

3.3 WATCH then heard a short presentation from Dr Wilkinson, regulatory manager at Keystone Europe Ltd, supplier of dyes to industries involved in non-destructive crack testing of metals.

3.4 Dr Wilkinson explained that, following the position taken by WATCH in 2008, his company’s supplier of C.I Solvent Red 164 had instructed a global withdrawal of the substance from this use. Total EU sales of C.I. Solvent Red 164 had fallen greatly in recent years (currently in the region of 6 tons per year). He argued that non-destructive testing using C.I. Solvent Red 164 is an essential part of testing for many safety-critical metal components. Keystone Europe was very concerned that following the withdrawal of the substance, the use of inferior or more hazardous alternative products would increase. This could include the significantly more expensive rhodamine dyes, which Dr Wilkinson considered did not have a particularly advantageous safety profile, or ‘C.I. Solvent Red 164’ products that represented more hazardous formulations.
3.5 The Chairman queried the apparent assertion that the WATCH position of 2008 had produced the changes in the market described; he could not see that the WATCH position would have been likely to have resulted in the global withdrawal of C.I. Solvent Red 164 from this area of use by a major multinational chemicals company. Dr Wilkinson agreed that there may have been other influencing factors.

3.6 Members noted the poster circulated with the meeting papers reporting a German study of bladder cancer in crack testers applying azo dye-based sprays to metal components. One member also circulated a pre-publication draft of work undertaken in UK. Both presented epidemiology data suggestive of a possible association between exposure to these dyes and bladder cancer. He considered that these studies yielded interesting findings, but the evidence was not conclusive.

3.7 WATCH noted that it had now seen a number of different chemical structures purporting to represent C.I Solvent Red 164. Dr Wilkinson stated that the term C.I. Solvent Red 164 should be applied specifically to one structure and he confirmed that this would not be expected to result in the formation of ortho-toluidine via breakage of azo bonds. In addition, he stated that only a small proportion of the population have the necessary enzyme activity to break the azo bonds in these structures. A WATCH member cautioned that there was a need to interpret the situation with care, as it was clear that various dyes with different potential metabolite profiles were being considered in the various papers that had now come before the committee. It was not for WATCH to make recommendations that would affect markets by comparing the hazards posed by different substances. It was noted that the HSL work had focused specifically on the use of C.I. Solvent Red 164 only, although it was clear that at the sites studied other dyes had also been used.

3.8 Members confirmed that if the issue of concern was the potential for formation of ortho-toluidine with exposure to C.I. Solvent Red 164 they were reassured by the biological monitoring work that had been undertaken by HSL. With these results, and also the argument that there would be no formation of ortho-toluidine following exposure to at least one of the chemical structures claimed to be C.I. Solvent Red 164, there should be concern if there are now market trends encouraging the use of, and exposures to possibly more hazardous dye products.

3.9 Members commented that historically, dyes would have been less pure than today, and in considering epidemiology based on historic exposures the dyes to which exposures were reported may well have included a mixture of substances including impurities. The committee also considered that there may have been less use of personal protective equipment (PPE) in the past. A member added that workers in metal fabrication industries undertake a range of different tasks, so in epidemiology studies of this sector there would always be potential confounding exposures. In addition, it should be borne in mind that where volunteers opt into bio-monitoring studies such as the HSL investigation, the study involves a self-selected sample.
3.10 A member suggested that, in view of the potential uncertainties about the structure, composition and hazardous properties of these dyes, good occupational hygiene practice would be the best advice to give. This approach seemed to have been followed by those participating in the HSL study.

3.11 The Chairman confirmed that the item was to give the committee follow-up information; WATCH was not being asked to make a recommendation. He confirmed with the committee that it considered that its position of 2008 remained valid. (see minutes of 14 February 2008 meeting) WATCH also considered that current good occupational hygiene practice should offer protection of the current workforce and allow the use of C.I. Solvent Red 164 and other such dyes in non-destructive testing to continue. WATCH suggested that if there are indications that more hazardous products are entering this market HSE might consider further survey work to determine if detrimental changes to worker protection are arising.

3.12 HSE said that it was currently reviewing its guidance for worker protection in non-destructive testing using dyes. In drawing the item to a close, the Chairman suggested that the WATCH discussion be borne in mind by HSE in updating the guidance.

3.13 The current guidance refers to C.I. Solvent Red 164 having carcinogenic potential. The Chairman suggested that a key issue emerging from the discussion was the precise chemical identity of C.I. Solvent Red 164 and that of the dye used in any products on the market that are said to be based on “Solvent Red 164”. He asked Dr Wilkinson if it would be possible for him to pursue this issue? Dr Wilkinson said that he would.

Action: Dr Wilkinson

4.1 HSE reminded members of the background to this work. In the 1980s, Doll and Peto estimated that 2-8% of cancers arose as a result of occupational exposures. This work is now quite old and its validity as a representation of the current situation has been challenged. HSE commissioned this new work, engaging with international epidemiology and occupational exposure experts who had offered guidance throughout the project. This project included some very complex work, particularly with regard to the estimation of future burdens of occupational cancer. Publication of the findings of the study had already started; one paper had been provided to WATCH in the papers for the February 2011 meeting. A further publication on the methodology adopted in estimating the future occupational cancer burden was published in the American Journal of Epidemiology in March. In addition an HSE Research Report and a special supplement to the British Journal of Cancer were both planned. In addition 23 technical reports (for each cancer site) and a 13 paper special supplement in the British Journal of Cancer were both expected to be published in 2012.

4.2 The project had considered those substances or work circumstances
(e.g. painting) that are considered by IARC to be Group 1 or Group 2A carcinogens under the IARC categorisation system. The study had estimated the current burden of occupational cancers due to exposure to these specific agents/situations and had then moved on to consider estimates of future burdens, developing a methodology that enables consideration of the possible impact of interventions.

4.3 The IARC documentation does not necessarily identify the site-specific cancers on which the categorisation decisions were based, so the project had first to identify for each agent which particular cancers to consider. The study then aimed to find the attributable fraction, and an estimate of the number of the total cases of a specific cancer that would not have arisen had the exposure to the agent in question not have occurred. The project used established methods, taking account of the latency periods for different types of cancers (solid tumours about 20-50 years, other types of cancer 0-20 years) and the estimated numbers of people exposed. There was consideration of causes of uncertainty and the impact these would have on the estimates. The authors concluded that the uncertainties would not alter the relative contributions to the total occupational cancer burden estimated for different substances/work circumstances.

4.4 Members heard that HSE was looking at whether one could predict that better occupational hygiene conditions in the future would have a beneficial impact. For example, diesel engine exhaust (DEE) exposures now and in the future will be affected by improvements in diesel engines.

4.5 HSE stated that numerical outputs from this type of modelling cannot be considered to be accurate absolute values, but can be used to prioritise and to assess the relative impact of possible interventions. Whilst some future cases are already set by exposures that have occurred to date, interventions can be assessed in terms of their potential effects even further into the future.

4.6 The work on future predictions is based on assuming a single-step cancer initiation model and a linear non-threshold dose-response relationship. The aim of any direct, targeted intervention is to move downwards on the dose-response curve (and/or to reduce the numbers of people exposed).

4.7 There are of course a number of other influences on future burdens of cancer. These include more general employment and exposure trends, the introduction/modification of exposure standards and the enforcement of compliance with them, new engineering controls and the culture surrounding the use of PPE. The modelling also needs to try to take into account the aging population and changing employment trends.

4.8 HSE elaborated with an example using respirable crystalline silica and reported that HSE is considering how it might best use this work. Possibilities include examining the possible effect of various scenarios, or the possible impacts of differing interventions. However, in all of this work it remains essential to be aware that the numbers generated by
this work cannot be considered as absolute, but do give a feel for the relative importance of burdens and interventions. ACTS had received a similar presentation at its last meeting in May 2011 and had responded well, considering that this was an impressive and informative tool to assist judgements on potential impact, relative priority etc. The purpose of this session with WATCH was to give a foretaste of future papers and proposals, based on such work, which might be brought to WATCH for peer-review and expert input. WATCH members thoughts were invited on what they had heard today.

4.9 Members noted that it was important that the science underpinning this project stood up to scrutiny and challenge. They expressed some concern that the IARC conclusions had been taken apparently uncritically for some of the agents included in the published work. For example, one member referred to tetrachloroethylene; in the EU regulatory classification system the evidence for this substance having the potential to cause cancer in humans is deemed to be not convincing – and yet this substance is put forward as a substance of some priority in the Rushton et al (2010) published paper supplied. Another member noted that there will be both false positives and false negatives occurring due to the methodology adopted. There was some concern that restricting consideration to IARC Group 1 and 2A carcinogens excluded some substances that for which there might be less clear evidence of cancer having arisen in humans or experimental animals, perhaps because studies have not been done, but might present a substantial individual risk (because of high biological activity) and/or societal risk (because of widespread exposure).

4.10 Members recalled that HSE had initiated a review some years ago of the current scale and pattern of use in industry of carcinogenic substances. This was aimed at producing priorities and targets for interventions; WATCH enquired about progress. HSE responded that the project had looked at prioritising substances but had been advised by consultees to keep options open. At the last consultative workshop held in 2008 a list of industries and occupational groups had been issued, but a concern was expressed that the data didn't seem robust. WATCH members who had participated at the time confirmed that there were shortcomings in the data, with gaps in knowledge about both the levels of exposure and the numbers of workers involved. HSE referred to plans to try to update the work.

Action: HSE to make available to WATCH the report from the workshop OH1/2008

4.11 Members expressed satisfaction that there will be further work and debate on this work and its follow-up. Many assumptions had to be made, and these will be carried through in any proposed future use of the data. It was important to be careful in developing the use of the work done by this project to avoid serious mistakes. The different potential mechanisms of carcinogenicity were an important factor that had not been considered in the approach adopted. Members noted that the Committee on Carcinogenicity (COC) had advised against linear
extrapolation of dose-response curves to predict risk and one member suggested that the work be referred to the COC for consideration. Even if linear extrapolation was undertaken to model the dose-response curve for carcinogens operating through a genotoxic mode-of-action, there are other carcinogens that appear to trigger cancer as a secondary consequence of processes that have thresholds; interventions that take exposure below such a threshold would eliminate the risk in those individuals.

4.12 Members agreed that precision in numbers was not an essential prerequisite for justifiable decision-making and follow-up action. However, they considered that limitations about the reliability of numerical estimates should be made clear in all publications produced. Even so, members recognised that it would not be possible to prevent the misuse of numerical data; experience has shown that however much such estimates are qualified, the qualifications tend to fall away when interested parties want to use the numbers to support a position. They commented that the values were most useful in giving an indication of scale; in the respirable crystalline silica example given, construction workers’ exposure to silica stood out, and would still do so even if the numerical estimates were considerably inaccurate.

4.13 Members reflected on intervention issues for substances that are ubiquitous in daily life, such as respirable crystalline silica. Whilst potential changes to occupational exposure limits might have a role to play, a member commented that for people working in potentially high exposure situations the main issue is how those people work; recognition of risk is crucial.

4.14 Members also pointed out that whilst clearly death from cancer matters greatly, the suffering associated with cancer morbidity and quality of life issues are perhaps just as significant. It was noted that there should be great concern about how much life is shortened by contracting cancer and the preceding impact that has on quality of life.

4.15 Members agreed that the cancer burden work should not be used in isolation, but as part of a ‘toolkit’ to help inform decision-making about priorities and interventions. Members asked whether other bodies were trying to use similar approaches. HSE advised that work was underway in both EU (where some of the same team were involved) and WHO to take up this approach. The Chairman thanked HSE for the presentation and members for their views; he concluded the discussion by advising WATCH members to expect items on future WATCH agendas arising from this general approach.

5. Long Latency Health Risks in Foundries project; background and current standing [WATCH/2011/6]

5.1 Members heard a presentation from HSL outlining the work done on this project. A number of questions were raised in the accompanying paper, focussed on how to interpret the data already collected, what to learn from it and the merits of pursuing the proposed future HSE/HSL work plan, and what influence to look to exert on further work done by the
5.2 With reference to fig 1 of the paper, in comparing the newer HSL data with the older industry data, a member asked why the range of exposures covered by the newer data became more compressed, but the lower end of the range did not diminish? HSL responded that the newer data set was small and one would expect more spread (less compression) in a larger dataset. It was possible that in both data sets the foundries visited encompassed some sites complying well with good practice – hence the similar lower end of the two ranges.

5.3 WATCH worked through the questions raised in the Technical Annex to the covering paper; and the request in the cover paper to provide a general opinion on the necessity and value of completing the proposed programme of further work. In response to the request for a general opinion, an overriding point was made by WATCH that, in progressing any further work, there is both a benefit to be gained in increased scientific/technical knowledge but also an opportunity cost. WATCH was being asked to consider this paper in isolation; ultimately, any decisions as to whether or not this work continued and in what form should be judged alongside HSE's wider priorities to ensure the available resource was used to best effect.

5.4 The question under heading 1 on page 7 of the Annex suggested that future work could rely on biological, rather than air monitoring to identify aromatic amine and PAH (polycyclic aromatic hydrocarbon) exposure. The WATCH view was that the proposed reliance on biological monitoring was sensible as a screen, but recommended that if any high biological monitoring results were obtained there should be follow-up with airborne exposure monitoring at those sites and for those individuals. It would be important to gain as much information as possible about the origin of any markedly high body burdens.

5.5 An earlier question under heading 1 on page 6 asked about the use of the HSL Biological Monitoring database to derive guidance values (based on e.g. 90% percentile) for some substances for which there is no formal UK Biological Monitoring Guidance Value (BMGV). HSL gave more information about the extent and content of the HSL database. Samples had come from a variety of sources, from companies and following inspections, over a considerable number of years. 37 substances within the database have over 1000 analytical results. The top 10 substances assayed all have over 5000 results. The data are not industry-specific, although some HSE samples did include information on the context. As an example, HSL referred to the data on nickel and explained that about 90% of samples for nickel were below 24µmol/mol creatinine. The 90% level had been adopted as representative of the degree of control of exposure that industry can achieve. Members offered a cautious ‘yes’ to the use, in the absence of formal BMGVs, of comparisons of results from foundries with values in the HSL database. This offers a way of assessing the standard of control of exposure, with the caution that overall distributions may reflect higher ranges of exposure than the specific industry sector.
of concern. WATCH also considered that knowledge of the distribution pattern of the biological monitoring data was important. Also a concern was expressed about whether it would be appropriate to use any such findings to ask the companies involved to do more than the legal minimum. WATCH were advised that from the visits made the industry was comfortable at present with the approach being advocated.

5.6	In response to the question under heading 2.1, members agreed that, for the purposes of this survey work and the identification of issues on which to focus attention, in most cases it was a reasonable pragmatic approach to take ‘significant exposure’ to a particular substance encountered in foundries to be exposures in excess of half of the Workplace Exposure Limit (WEL) for that substance.
5.7	A question at 1.3 concerned using the pattern of results current available to inform on how best to tailor the approach taken to future measurement work. WATCH suggested that before decisions are made on future approaches, the team should first explore further how to maximise the value of the current data set. For example, there were 80-90 measurements that would be regarded as ‘significant exposures’ (as defined in the paper and at 5.6 above). For these, it was not clear whether these exposures could be connected to specific individuals or arose sporadically across a wide range of situations. There was little information presented that would enable the reader to determine whether exposures vary between processes. A member suggested that the team try principal component analysis to obtain better insight.
5.8	WATCH members considered the question under heading 4 suggesting that the project should focus future site visits on specific foundry types. WATCH agreed and also emphasised that investigative work should remain focused on long-latency disease and its prevention.
5.9	WATCH was asked to consider the merits of further promotion of the possibilities for substitution, an example of which is given under heading 5.3 of the Technical Annex. Members commented that, in considering selling a product, whether that be a resin, foundry sand etc, the supplier has a duty to ensure that the planned use will be safe. It can be anticipated that duties under the REACH Regulation will further emphasise this requirement. In relation to the example given, WATCH commented that, whilst the eradication of benzene exposure as a result of the substitution decision made was to be congratulated, all concerned should guard against deflecting attention from continuing attempts to improve local exhaust ventilation (LEV) and the control of exposures more generally. WATCH members would support those involved in the project to use opportunities to promote substitution, but noted a need to beware of unintended consequences that can arise if substitution becomes too dominant as a focus of attention.
5.10	WATCH members asked whether the data currently available indicated a clear difference in exposures between newly built foundries and older plants. Members were advised that there are few newly built plants.
There was reference to one such “new” foundry built in Sweden some years ago which closed within 2 years, on the grounds of being uneconomic. While it is likely that newer foundries will be “cleaner”, there are few of them; most working foundries have operated for some time and all pose some occupational hygiene issues.

5.11 The question under heading 6 concerned the value of a planned health survey. WATCH responded that the planned health survey was potentially valuable, but queried whether it was likely that meaningful changes could be detected within the relatively short study period proposed of 3-5 years. The committee and other attendees also expressed concern that the sample size had to be sufficiently large for the study to be able to pick up changes and for findings to be considered robust. HSE advised that the project was subject to an HSE/HSL governance board including external representation which would consider these issues.

5.12 Members commented that the information available seemed to suggest variability in exposures both within and between workers. The proposed structure of the health survey aspect of the future work would entail repeated measurements in the same individuals; this would enhance understanding about the exposure patterns encountered and variability within and between individuals.

5.13 Members also cautioned that there was always a risk that overt ongoing scrutiny of any cohort of workers can result in the workplace situation for workers in this cohort diverging from industry norms in a beneficial direction. Whilst this would clearly be good for the workers in the cohort, it would lead to the findings of the study not providing a good representation of the more general situation in the industry.

5.14 Members asked if the extensive Castings Technology International (CTI) dataset already available includes data for repeat visits to individual companies. If so, some relevant data on the impact of follow-up scrutiny of individual foundries could be found within that dataset. In reply it was stated that there were a number of companies that gave access and allowed measurements to be taken repeatedly over about 20 years. In general, it was likely that these companies were those that were more pro-active in controlling exposures.

5.15 In summing up, the Chair confirmed with WATCH that its largely positive responses to the individual questions posed in the paper would be captured in the detailed wording of the minutes (see blocks of bold text at 5.4 – 5.11 above). Further work could yield valuable information about potential improvements that can be made and it would be important to disseminate this around the industry. It was also important that decisions about any further work should be taken in the context of a wider set of considerations of priorities and competition for resources (see bold text in paragraph 5.3 above).

6. Dustiness of flour: a presentation on the factors affecting the dustiness of flour dust [WATCH/2011/7]
6.1
HSL delivered this brief presentation to WATCH, for information. Members heard that one of the aims of the project undertaken was to examine whether making variations in flour improvers could be used to have a beneficial impact on the control of occupational exposure to the allergens present in flour dust. Flour improvers include a number of components and are the mechanism by which the different qualities of baked goods can be achieved. Improvers typically contain enzymes, soya flour, vegetable oils, calcium sulphate and emulsifiers (including calcium silicate as a free-flow agent). The aim of the project was to alter the proportions of these ingredients to explore the effects on dustiness at source. Initial results were surprising, in that there was an unexpected increase in dustiness, when it was anticipated that adding the oil-containing improver would have the opposite effect. Closer examination indicated that the free-flow agent calcium silicate was possibly causing flour particles to break into multiple smaller particles. Further trials using increased oil content and decreased calcium silicate and calcium sulphate helped to reduce dustiness. HSL concluded that this work indicated the necessity of being aware of the effects of “flour dust” formulation on dustiness; and that the issue was relevant to a wider range of potentially dusty materials used in food manufacture and processing. HSL was in discussion with the wider food industry to try to characterise the influences on dustiness and the relative potency of different allergens, with an aim of ranking different potential concerns.

6.2
Members asked about the feasibility of making such dustiness-reducing changes – what impact might they have on the desired quality of the baked products? HSL replied that the changes made in the trials were all within the range considered acceptable, but clearly this would need to be confirmed before any final formulations were agreed and introduced. The Chairman thanked HSL for the presentation.

7.
Minutes of 20th meeting held 25th February 2011 [WATCH/MIN/2011/1]

7.1
Members confirmed the minutes as drafted and agreed to future publication of draft minutes following email consideration, provided it was made clear at publication that they were still subject to confirmation of adoption at the next future meeting.

8.
Matters arising: asbestos, further work on measurement/monitoring [WATCH/2011/8]

8.1
Members noted that the ‘ad hoc’ members had been thanked for their work on asbestos. The Chairman confirmed that HSE did not require WATCH to take forward the further work suggested on monitoring and measurement. HPA noted that COC had been asked by the Department for Education to consider the vulnerability of children to asbestos, and would start this work in November. http://www.iacoc.org.uk/meetings/documents/Agenda241111_000.pdf

HSE was meeting all requests from the COC Secretariat in relation to this item.

9.1 WATCH was provided with information on views expressed by various parties on the appropriate actions that should be taken on this issue.

10. **Electronic consideration of papers relating to negotiation of amendments to the EU Carcinogens and Mutagens Directive. Members views on the process**

10.1 The Chairman explained that it was the suggestion of ACTS that WATCH members’ views on a number of papers relating to the Carcinogens and Mutagens Directive (CMD) should be sought. Advice on the first collection of documents was required for an EU meeting taking place at the same time as this WATCH meeting. Therefore the electronic consultation had been undertaken. He asked members for their views, based on this experience, and whether it was realistic to expect members to engage in consultation in this way.

10.2 **Members signified that it was acceptable to them to use this approach in such a situation; members would provide advice if they had time to do so, to assist HSE in preparation for the EU meetings.** WATCH requested that in future consultations, where possible, indications should be given about where to focus attention, in relation to specific items of concern, to facilitate efficient targeting of their time.

10.3 One member commented that he had understood that UK policy considered the setting of occupational exposure limits (OELs) to be rather a historic approach. He observed that in terms of carcinogens, the UK had more recently adopted a generic approach of seeking exposures to be controlled to ‘as low as reasonably practicable’ (ALARP), and promoting substitution to substances of lesser concern where possible. He queried whether the effort being expended in relation to proposals for new OELs was judged to be worthwhile. It was explained that there were about 30 carcinogenic substances that had been through the EU SCOEL (Scientific Committee on Occupational Exposure Limits) process, for which the European Commission (DG Employment) was now seeking a mechanism to establish OELs. The drive behind this current initiative was to unblock the progression of OELs for these substances.

10.4 The Chairman added that any EU OELs thus established would need to be implemented in the UK and therefore the UK wished to be active in the negotiation and development of any such limit values.

10.5 One member commented on the relevance of the documents for industry’s responsibilities to establish DMELs (Derived Minimal Effect Levels) for carcinogens under REACH. He considered that the paper on the generalities of setting OELs for carcinogens was particularly useful and the examples were good to illustrate some of the key points.

10.6 The Chairman explained that a further set of papers was expected for the next EU meeting in early 2012 and they would be circulated as soon as available to give members maximum time to peruse and comment.
There was also a possibility of reviewing next year’s WATCH meeting dates if this continues to be a source of substantial work for WATCH and if rescheduling WATCH meetings would better enable WATCH to feed advice into the EU process; members would be contacted about this as soon as possible following this meeting.

Action: Secretary

11. **ACTS update**

11.1 The Chairman noted that ACTS had met in May. Two of the items on today’s WATCH agenda – burden of occupational cancer; and OELs under the CMD – were discussed with ACTS and their subsequent appearance at WATCH reflected the desire for good engagement and interplay between HSE, ACTS and WATCH.

11.2 The next ACTS meeting was to take place on 29th November when the agenda was likely to include papers on RPE, metal working fluids, flour dust and enzymes.

12. **Public Consultation on proposed changes to the asbestos regulations [WATCH/2011/10]**

12.1 Members’ attention was drawn to the public consultation on the proposed regulatory changes that had resulted from EU infraction proceedings against the UK; members had been informed of these proceedings at the last WATCH meeting.

13. **Date of WATCH meetings 2012**

13.1 WATCH meetings were currently planned for 21 Feb, 20 June and 18 Oct 2012, however the secretary would be in touch if any of these needed to be changed as a result of EU meetings on the Carcinogens and Mutagens Directive. **Members were asked to keep the above dates in their diaries; and members requested that they be changed only if absolutely necessary.**

14. **Any other business**

14.1 There was no other business